Project: Making the MATLAB Implementation Competitive with Tensorflow

Last updated: May 25, 2020

Goal

- Using the Matlab-C interface to improve the running speed of our MATLAB implementation

Project Contents

- From project 3 we know that the MATLAB implementation is slower than Tensorflow
- The main issue is on index manipulation
- In project 4 we have seen that at least for one place (matrix expansion), our multi-core C code can be faster than MATLAB's implementations
- If we can integrate such implementations to the simpleNN MATLAB code, then the overall training time can be reduced
- To do so we should use the MATLAB-C interface

Project Contents II

- Besides the matrix expansion, we want to develop C code for other bottlenecks as well
- We hope that eventually the MATLAB code can be as fast as Tensorflow
- Not clear if we can really reach this goal, but let's try the best

MATLAB-C Interface I

- Say we would like to replace

$$
\text { phiZ }=\text { phiZ(net.idx_phiZ\{m\}, :); }
$$

with our own implementation

- We write a special interface file matrixExpansion.cpp
- It's a MATLAB mexFunction and the format must be like

MATLAB-C Interface II

/* The gateway function */ void mexFunction(int nlhs, mxArray *plhs [], int nrhs, const mxArray *prhs[])
\{
/* variable declarations here */
/* code here */
\}

- See more information at https://www.mathworks.com/help/matlab/ matlab_external/standalone-example.html

MATLAB-C Interface III

- Here we have four arguments
- nlhs: Number of output (left-side) arguments, or the size of the plhs array.
- plhs: Array of output arguments.
- nrhs: Number of input (right-side) arguments, or the size of the prhs array.
- prhs: Array of input arguments.
- Thus prhs [0] can be for example the input array for expansion
- We will show a real example of matrix expansion after project 4 presentation

An Example on Matrix Expansion I

- The . cpp code \#include <omp.h>
\#include "mex.h"
extern "C" void mexFunction(int nlhs, mxArray* plhs [], int nrhs, const mxArray’ \{
auto\& matrix = prhs[0];
auto\& indices = prhs[1];
auto\& out $=$ plhs[0];

An Example on Matrix Expansion II

auto $1=m x G e t M(i n d i c e s)$;
auto m = mxGetM (matrix);
auto $n=m x G e t N(m a t r i x)$;

auto $A=$ (float*) mxGetPr (matrix);
auto $\mathrm{a}=\mathrm{mxGetPr}($ indices) ;
out $=$ mxCreateNumericMatrix(l, n, mxSINGLE_ auto $B=$ (float*)mxGetPr (out);

An Example on Matrix Expansion III

\#pragma omp parallel for schedule(static)
for (mwSize j = 0; j < n; j++)

$$
\begin{aligned}
& \text { for }(\mathrm{mwSize} \\
& \mathrm{B}[j * \mathrm{l}+\mathrm{i}]=\mathrm{A} ; \mathrm{i}<\mathrm{j} * \mathrm{~m}+\mathrm{int}(\mathrm{a}[\mathrm{i}])-1] ;
\end{aligned}
$$

\}

- See files provided in this directory
- To build the .mex file for MATLAB, we provide two ways by using
make.m
or
Makefile

An Example on Matrix Expansion IV

- Thus you can either type
>> make
under MATLAB or
\$ make
under the shell
- For unknown reasons, if using
>> make
on the department's servers, MATLAB reported an error saying that the resulting file is not a MEX file.

An Example on Matrix Expansion V

But in fact it works

- To build the file on Octave, the only way we provided is through
>> make
However, you need to remove the line \#include "matrix.h" in the cpp file.
- The usage can be like
>> A $=$ single(rand (1000, 1000));
>> a = randi(1000, 2000, 1);
>> isequal(A(a, :), matrixExpansion(A, a))

An Example on Matrix Expansion VI

We provide a test.m for running these three lines

Presentation I

- Presentations for projects 5 and 6
proj ID
5 ntust_f10802006
6 b05201015
5 b05201024
6 b05201037
5 t08303135
5 b06502060
5 r08521508
6 d08525008
6 b05701231

Presentation II

6 b06901143
5 t08902130
5 b06902124
6 b05902035
5 b05902050
5 b05902105
5 d08921024
6 a08922103
5 a08922119
6 a08922203
6 d08922029

Presentation III

5 d08922034
5 p08922005
6 r08922019
6 r08922082
5 r08922163
5 r07922100
6 r07922154
6 r08922a07
5 d04941016
6 r08942062
6 a08946101

Presentation IV

please do a 10-minute presentation (9-minute the contents and 1-minute Q\&A)

