Optimization Problems for Neural Networks

Chih-Jen Lin
National Taiwan University

Last updated: January 19, 2020
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Minimizing Training Errors

- Basically a classification method starts with minimizing the training errors

\[\min_{\text{model}} \text{(training errors)} \]

- That is, all or most training data with labels should be correctly classified by our model

- A model can be a decision tree, a neural network, or other types
For simplicity, let’s consider the model to be a vector \mathbf{w}.

That is, the decision function is $\text{sgn}(\mathbf{w}^T \mathbf{x})$.

For any data, \mathbf{x}, the predicted label is

$$\begin{cases}
1 & \text{if } \mathbf{w}^T \mathbf{x} \geq 0 \\
-1 & \text{otherwise}
\end{cases}$$
Minimizing Training Errors (Cont’d)

- The two-dimensional situation

\[\mathbf{w}^T \mathbf{x} = 0 \]

- This seems to be quite restricted, but practically \(\mathbf{x} \) is in a much higher dimensional space.
To characterize the training error, we need a loss function \(\xi(w; y, x) \) for each instance \((y, x)\), where \(y = \pm 1 \) is the label and \(x \) is the feature vector.

Ideally we should use 0–1 training loss:

\[
\xi(w; y, x) = \begin{cases}
1 & \text{if } y w^T x < 0, \\
0 & \text{otherwise}
\end{cases}
\]
Minimizing Training Errors (Cont’d)

However, this function is discontinuous. The optimization problem becomes difficult

\[\xi(w; y, x) \]

We need continuous approximations.
Common Loss Functions

- Hinge loss (l1 loss)

\[\xi_{L1}(\mathbf{w}; y, \mathbf{x}) \equiv \max(0, 1 - y\mathbf{w}^T\mathbf{x}) \quad (1) \]

- Logistic loss

\[\xi_{LR}(\mathbf{w}; y, \mathbf{x}) \equiv \log(1 + e^{-y\mathbf{w}^T\mathbf{x}}) \quad (2) \]

- Support vector machines (SVM): Eq. (1). Logistic regression (LR): (2)

- SVM and LR are two very fundamental classification methods
Logistic regression is very related to SVM
Their performance is usually similar
However, minimizing training losses may not give a good model for future prediction

Overfitting occurs
Overfitting

- See the illustration in the next slide
- For classification,
 You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should
 Avoid underfitting: small training error
 Avoid overfitting: small testing error
● and ▲: training; ○ and △: testing

Regularized linear classification

Chih-Jen Lin (National Taiwan Univ.)
Regularization

To minimize the training error we manipulate the w vector so that it fits the data.

To avoid overfitting we need a way to make w’s values less extreme.

One idea is to make w values closer to zero.

We can add, for example,

$$\frac{w^T w}{2} \quad \text{or} \quad \|w\|_1$$

to the function that is minimized.
General Form of Linear Classification

- Training data \(\{y_i, x_i\}, x_i \in \mathbb{R}^n, i = 1, \ldots, l, y_i = \pm 1 \)
- \(l \): \# of data, \(n \): \# of features

\[
\min_w f(w), \quad f(w) \equiv \frac{w^T w}{2} + C \sum_{i=1}^{l} \xi(w; y_i, x_i)
\]

- \(w^T w / 2 \): regularization term
- \(\xi(w; y, x) \): loss function
- \(C \): regularization parameter (chosen by users)
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Our training set includes \((y^i, x^i), i = 1, \ldots, l\).

- \(x^i \in \mathbb{R}^{n_1}\) is the feature vector.
- \(y^i \in \mathbb{R}^K\) is the label vector.

As label is now a vector, we change (label, instance) from
\((y_i, x_i)\) to \((y^i, x^i)\)

- \(K\): # of classes
- If \(x^i\) is in class \(k\), then

\[
y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K
\]

\(k-1\)
Multi-class Classification II

- A neural network maps each feature vector to one of the class labels by the connection of nodes.
Fully-connected Networks

- Between two layers a weight matrix maps inputs (the previous layer) to outputs (the next layer).
Operations Between Two Layers I

- The weight matrix W^m at the mth layer is

$$W^m = \begin{bmatrix}
 w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
 w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{n_{m+1}}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m
\end{bmatrix}_{n_{m+1} \times n_m}$$

- n_m : # input features at layer m
- n_{m+1} : # output features at layer m, or # input features at layer $m + 1$
- L: number of layers
Operations Between Two Layers II

- $n_1 = \# \text{ of features}, n_{L+1} = \# \text{ of classes}$
- Let z^m be the input of mth layer. $z^1 = x$ and z^{L+1} is the output
- From mth layer to $(m + 1)$th layer

\[
\begin{align*}
 s^m &= W^m z^m, \\
 z_j^{m+1} &= \sigma(s_j^m), \quad j = 1, \ldots, n_{m+1},
\end{align*}
\]

$\sigma(\cdot)$ is the activation function.
Usually people do a bias term

\[
\begin{bmatrix}
 b^m_1 \\
 b^m_2 \\
 \vdots \\
 b^m_{m+1}
\end{bmatrix}_{n_{m+1} \times 1}
\]

so that

\[s^m = W^m z^m + b^m\]
Operations Between Two Layers IV

- Activation function is an $R \rightarrow R$ transformation. As we are interested in optimization, let’s not worry about why it’s needed.
- We collect all variables:

$$\theta = \begin{bmatrix}
\text{vec}(W^1) \\
b^1 \\
\vdots \\
\text{vec}(W^L) \\
b^L
\end{bmatrix} \in \mathbb{R}^n$$
Optimization problem for fully-connected networks

Operations Between Two Layers V

\[n : \text{total \# \ variables} = (n_1 + 1)n_2 + \cdots + (n_L + 1)n_{L+1} \]

- The vec(\cdot) operator stacks columns of a matrix to a vector
Optimization Problem I

We solve the following optimization problem,

$$\min_\theta f(\theta), \quad \text{where}$$

$$f(\theta) = \frac{1}{2} \theta^T \theta + C \sum_{i=1}^I \xi(z^{L+1,i}(\theta); y^i, x^i).$$

- C: regularization parameter
- $z^{L+1}(\theta) \in R^{n_{L+1}}$: last-layer output vector of x.
- $\xi(z^{L+1}; y, x)$: loss function. Example:

$$\xi(z^{L+1}; y, x) = \|z^{L+1} - y\|^2$$
Optimization Problem II

- The formulation is **same as linear classification**
- However, the loss function is **more complicated**
- Further, it’s **non-convex**
- Note that in the earlier discussion we consider a single instance
- In the training process we actually have for $i = 1, \ldots, l$,

$$s^{m,i} = W^m z^{m,i},$$

$$z_{j}^{m+1,i} = \sigma(s_{j}^{m,i}), \quad j = 1, \ldots, n_{m+1},$$

This makes the training more complicated
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Why CNN? I

- There are many types of neural networks
- They are suitable for different types of problems
- While deep learning is hot, it’s not always better than other learning methods
- For example, fully-connected networks were evaluated for general classification data (e.g., data from UCI machine learning repository)
- They are not consistently better than random forests or SVM; see the comparisons (Meyer et al., 2003; Fernández-Delgado et al., 2014; Wang et al., 2018).
Why CNN? II

- We are interested in CNN because it’s shown to be significantly better than others on image data.
- That’s one of the main reasons deep learning becomes popular.
- To study optimization algorithms, of course we want to consider an “established” network.
- That’s why CNN was chosen for our discussion.
- However, the problem is that operations in CNN are more complicated than fully-connected networks.
- Most books/papers only give explanation without detailed mathematical forms.
Why CNN? III

- To study the optimization, we need some clean formulations
- So let’s give it a try here
Consider a K-class classification problem with training data

$$(y^i, Z^{1,i}), \quad i = 1, \ldots, l.$$

y^i: label vector

$Z^{1,i}$: input image

If $Z^{1,i}$ is in class k, then

$$y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K.$$

CNN maps each image $Z^{1,i}$ to y^i
Typically, CNN consists of multiple convolutional layers followed by fully-connected layers.

Input and output of a convolutional layer are assumed to be images.
For the current layer, let the input be an image

\[Z^{in} : a^{in} \times b^{in} \times d^{in}. \]

\(a^{in} \): height, \(b^{in} \): width, and \(d^{in} \): \#channels.
Optimization problem for convolutional neural networks (CNN)

Convolutional Layers II

The goal is to generate an output image

\[Z^{\text{out},i} \]

of \(d^{\text{out}} \) channels of \(a^{\text{out}} \times b^{\text{out}} \) images.

- Consider \(d^{\text{out}} \) filters.
- Filter \(j \in \{1, \ldots, d^{\text{out}}\} \) has dimensions

\[h \times h \times d^{\text{in}}. \]

\[
\begin{bmatrix}
 w^j_{1,1,1} & w^j_{1,h,1} \\
 \vdots & \vdots \\
 w^j_{h,1,1} & w^j_{h,h,1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 w^j_{1,1,d^{\text{in}}} & \cdots & w^j_{1,h,d^{\text{in}}} \\
 \vdots & \ddots & \vdots \\
 w^j_{h,1,d^{\text{in}}} & \cdots & w^j_{h,h,d^{\text{in}}}
\end{bmatrix}
\]
To compute the jth channel of output, we scan the input from top-left to bottom-right to obtain the sub-images of size $h \times h \times d^\text{in}$.
We then calculate the inner product between each sub-image and the jth filter.

For example, if we start from the upper left corner of the input image, the first sub-image of channel d is

$$
\begin{bmatrix}
z_{1,1,d}^i & \cdots & z_{1,h,d}^i \\
\vdots & \ddots & \vdots \\
z_{h,1,d}^i & \cdots & z_{h,h,d}^i
\end{bmatrix}.
$$
We then calculate

$$
\sum_{d=1}^{d_{in}} \langle \begin{bmatrix}
 z_{1,1,d}^i & \cdots & z_{1,h,d}^i \\
 \vdots & \ddots & \vdots \\
 z_{h,1,d}^i & \cdots & z_{h,h,d}^i
\end{bmatrix}, \begin{bmatrix}
 w_{1,1,d}^j & \cdots & w_{1,h,d}^j \\
 \vdots & \ddots & \vdots \\
 w_{h,1,d}^j & \cdots & w_{h,h,d}^j
\end{bmatrix} \rangle + b_j,
$$

(3)

where $\langle \cdot, \cdot \rangle$ means the sum of component-wise products between two matrices.

- This value becomes the $(1, 1)$ position of the channel j of the output image.
Next, we use other sub-images to produce values in other positions of the output image.

Let the stride s be the number of pixels vertically or horizontally to get sub-images.

For the $(2, 1)$ position of the output image, we move down s pixels vertically to obtain the following sub-image:

$$
\begin{bmatrix}
z^i_{1+s,1,d} & \cdots & z^i_{1+s,h,d} \\
\vdots & \ddots & \vdots \\
z^i_{h+s,1,d} & \cdots & z^i_{h+s,h,d}
\end{bmatrix}
$$
The \((2, 1)\) position of the channel \(j\) of the output image is

\[
\sum_{d=1}^{d_{\text{in}}} \left\langle \begin{bmatrix} z_{1+s,1,d}^j & \cdots & z_{1+s,h,d}^j \\ \vdots & \ddots & \vdots \\ z_{h+s,1,d}^j & \cdots & z_{h+s,h,d}^j \end{bmatrix} , \begin{bmatrix} w_{1,1,d}^j & \cdots & w_{1,h,d}^j \\ \vdots & \ddots & \vdots \\ w_{h,1,d}^j & \cdots & w_{h,h,d}^j \end{bmatrix} \right\rangle + b_j.
\]
Assume that vertically and horizontally we can move the filter a^{out} and b^{out} times, respectively.

$$a^{\text{out}} = \left\lfloor \frac{a^{\text{in}} - h}{s} \right\rfloor + 1, \quad b^{\text{out}} = \left\lfloor \frac{b^{\text{in}} - h}{s} \right\rfloor + 1$$
For efficient implementations, we should conduct convolutional operations by matrix-matrix and matrix-vector operations.

We will go back to this issue later.
Matrix Operations II

Let’s collect images of all channels as the input

\[Z^{\text{in},i} = \begin{bmatrix}
 z^i_{1,1,1} & z^i_{2,1,1} & \cdots & z^i_{a^{\text{in}},b^{\text{in}},1} \\
 \vdots & \vdots & \ddots & \vdots \\
 z^i_{1,d^{\text{in}}} & z^i_{2,d^{\text{in}}} & \cdots & z^i_{a^{\text{in}},b^{\text{in}},d^{\text{in}}} \\
\end{bmatrix} \in \mathbb{R}^{d^{\text{in}} \times a^{\text{in}} \times b^{\text{in}}} \]
Matrix Operations III

Let all filters

\[W = \begin{bmatrix}
 w_{1,1,1}^1 & w_{2,1,1}^1 & \cdots & w_{h,h,d_{in}}^1 \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{1,1,1}^{d_{out}} & w_{2,1,1}^{d_{out}} & \cdots & w_{h,h,d_{in}}^{d_{out}}
\end{bmatrix} \in \mathbb{R}^{d_{out} \times hh d_{in}} \]

be variables (parameters) of the current layer.
Usually a bias term is considered

\[b = \begin{bmatrix} b_1 \\ \vdots \\ b_{d_{\text{out}}} \end{bmatrix} \in \mathbb{R}^{d_{\text{out}} \times 1} \]

Operations at a layer

\[S_{\text{out},i} = W \phi(Z_{\text{in},i}) + b_1^T 1_{a_{\text{out}}b_{\text{out}}} \]

\[\in \mathbb{R}^{d_{\text{out}} \times a_{\text{out}}b_{\text{out}}} \]
where

$$1_{a_{\text{out}} b_{\text{out}}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^{a_{\text{out}} b_{\text{out}} \times 1}.$$

$\phi(Z_{m,i})$ collects all sub-images in $Z_{m,i}$ into a matrix.
Specifically,

\[\phi(Z^{in,i}) = \begin{bmatrix}
 z_{1,1,1} & z_{1}^{i} + s,1,1 \\
 z_{2,1,1} & z_{2}^{i} + s,1,1 \\
 \vdots & \vdots & \ddots \\
 z_{h,h,1} & z_{h}^{i} + s,h,1 \\
 \vdots & \vdots & \ddots \\
 z_{h,h,d^{in}} & z_{h}^{i} + s,h,d^{in} \\
\end{bmatrix} \in \mathbb{R}^{hhd^{in} \times a^{out} b^{out}}
\]
Activation Function I

- Next, an activation function scales each element of \(S^{out,i} \) to obtain the output matrix \(Z^{out,i} \).

\[
Z^{out,i} = \sigma(S^{out,i}) \in R^{d^{out} \times a^{out} b^{out}}.
\]

- For CNN, commonly the following RELU activation function

\[
\sigma(x) = \max(x, 0)
\]

is used (reasons?)

- Later we need that \(\sigma(x) \) is differentiable, but the RELU function is not.
Past works such as Krizhevsky et al. (2012) assume

\[\sigma'(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{otherwise}
\end{cases} \]
The Function $\phi(Z^{in,i})$ I

- In the matrix-matrix product

$$W \phi(Z^{in,i}),$$

each element is the inner product between a filter and a sub-image

- We need to represent $\phi(Z^{in,i})$ in an explicit form.
- This is important for subsequent calculation
- Clearly ϕ is a linear mapping, so there exists a 0/1 matrix P^m_ϕ such that

$$\phi(Z^{in,i}) \equiv \text{mat}(P_\phi \text{vec}(Z^{in,i}))_{hhd^{in} \times a^{out} b^{out}}, \forall i,$$ (9)
The Function $\phi(Z^{in,i})$ II

- **vec(M)**: all M’s columns concatenated to a vector v

\[
\text{vec}(M) = \begin{bmatrix}
M_{:,1} \\
\vdots \\
M_{:,b}
\end{bmatrix} \in \mathbb{R}^{ab \times 1}, \text{ where } M \in \mathbb{R}^{a \times b}
\]

- **mat(v)** is the inverse of vec(M)

\[
\text{mat}(v)_{a \times b} = \begin{bmatrix}
v_1 & v_{(b-1)a+1} \\
\vdots & \vdots \\
v_a & v_{ba}
\end{bmatrix} \in \mathbb{R}^{a \times b}, \quad (10)
\]
The Function $\phi(Z^{in,i})$

where

$$ v \in \mathbb{R}^{ab \times 1}. $$

- P_ϕ is a huge matrix:

$$ P_\phi \in \mathbb{R}^{hhd^{in}a^{out}b^{out} \times d^{in}a^{in}b^{in}} $$

and

$$ \phi : \mathbb{R}^{d^{in}a^{in}b^{in}} \rightarrow \mathbb{R}^{hhd^{in}a^{out}b^{out}} $$

- Later we will check implementation details
- Past works using the form (9) include, for example, Vedaldi and Lenc (2015)
Optimization Problem I

- We collect all weights to a vector variable θ.

$$\theta = \begin{bmatrix}
\text{vec}(W^1) \\
b^1 \\
\vdots \\
\text{vec}(W^L) \\
b^L
\end{bmatrix} \in \mathbb{R}^n, \quad n : \text{total \# variables}$$

- The output of the last layer L is a vector $z^{L+1,i}(\theta)$.
- Consider any loss function such as the squared loss

$$\xi_i(\theta) = \left\| z^{L+1,i}(\theta) - y^i \right\|^2.$$
Optimization Problem II

The optimization problem is

$$\min_{\theta} f(\theta),$$

where

$$f(\theta) = \frac{1}{2C} \theta^T \theta + \frac{1}{l} \sum_{i=1}^{l} \xi(z^{L+1,i}(\theta); y^i, Z^{1,i})$$

C: regularization parameter.

The formulation is almost the same as that for fully connected networks.
Optimization Problem III

- Note that we divide the sum of training losses by the number of training data.
 Thus the second term becomes the average training loss.

- With the optimization problem, there is still a long way to do a real implementation.

- Further, CNN involves additional operations in practice:
 - padding
 - pooling

- We will explain them.
Zero Padding I

- To better control the size of the output image, before the convolutional operation we may enlarge the input image to have zero values around the border.
- This technique is called zero-padding in CNN training.
- An illustration:
Zero Padding II

Optimization problem for convolutional neural networks (CNN)

An input image

p

$0 \cdots 0$

\vdots

p

$0 \cdots 0$

a^{in}

$0 \cdots 0$

b^{in}

$0 \cdots 0$

\vdots

$0 \cdots 0$

\vdots

$0 \cdots 0$
Zero Padding III

- The size of the new image is changed from
 \[a^{in} \times b^{in} \text{ to } (a^{in} + 2p) \times (b^{in} + 2p), \]

 where \(p \) is specified by users.

- The operation can be treated as a layer of mapping
 an input \(Z^{in,i} \) to an output \(Z^{out,i} \).

- Let
 \[d^{out} = d^{in}. \]
There exists a $0/1$ matrix $P_{pad} \in \mathbb{R}^{d_{out}a_{out}b_{out} \times d_{in}a_{in}b_{in}}$ so that the padding operation can be represented by

$$Z^{out,i} \equiv \text{mat}(P_{pad}\text{vec}(Z^{in,i}))_{d_{out} \times a_{out}b_{out}}.$$ \hspace{1cm} (11)

Implementation details will be discussed later.
Pooling I

- To reduce the computational cost, a dimension reduction is often applied by a pooling step after convolutional operations.
- Usually we consider an operation that can (approximately) extract rotational or translational invariance features.
- Examples: average pooling, max pooling, and stochastic pooling,
- Let’s consider max pooling as an illustration
Pooling II

- An example:

 image A
 \[
 \begin{bmatrix}
 2 & 3 & 6 & 8 \\
 5 & 4 & 9 & 7 \\
 1 & 2 & 6 & 0 \\
 4 & 3 & 2 & 1 \\
 \end{bmatrix}
 \rightarrow \begin{bmatrix}
 5 \\
 9 \\
 \end{bmatrix}
 \]

 image B
 \[
 \begin{bmatrix}
 3 & 2 & 3 & 6 \\
 4 & 5 & 4 & 9 \\
 2 & 1 & 2 & 6 \\
 3 & 4 & 3 & 2 \\
 \end{bmatrix}
 \rightarrow \begin{bmatrix}
 5 \\
 9 \\
 \end{bmatrix}
 \]
Pooling III

- B is derived by shifting A by 1 pixel in the horizontal direction.
- We split two images into four 2×2 sub-images and choose the max value from every sub-image.
- In each sub-image because only some elements are changed, the maximal value is likely the same or similar.
- This is called translational invariance
- For our example the two output images from A and B are the same.
Pooling IV

- For mathematical representation, we consider the operation as a layer of mapping an input $Z_{\text{in},i}$ to an output $Z_{\text{out},i}$.

- In practice pooling is considered as an operation at the end of the convolutional layer.

- We partition every channel of $Z_{\text{in},i}$ into non-overlapping sub-regions by $h \times h$ filters with the stride $s = h$.

- Because of the disjoint sub-regions, the stride s for sliding the filters is equal to h.

Pooling V

This partition step is a special case of how we generate sub-images in convolutional operations.

By the same definition as (9) we can generate the matrix

$$\phi(Z^{in,i}) = \text{mat}(P_{\phi} \text{vec}(Z^{in,i}))_{hh \times d^{out} a^{out} b^{out}},$$

where

$$a^{out} = \left\lfloor \frac{a^{in}}{h} \right\rfloor, \quad b^{out} = \left\lfloor \frac{b^{in}}{h} \right\rfloor, \quad d^{out} = d^{in}. \quad (13)$$
Pooling VI

Note that here we consider

$$hh \times d_{out} a_{out} b_{out}$$

rather than $$hhd_{out} \times a_{out} b_{out}$$

because we can then do a max operation on each column.

To select the largest element of each sub-region, there exists a matrix

$$M^i \in R^{d_{out} a_{out} b_{out} \times hhd_{out} a_{out} b_{out}}$$

so that each row of $$M^i$$ selects a single element from $$\text{vec}(\phi(Z_{in,i}))$$.

Optimization problem for convolutional neural networks (CNN)

Pooling VII

- Therefore,

 \[Z^{\text{out},i} = \text{mat} \left(M^i \text{vec}(\phi(Z^{\text{in},i})) \right)_{d^{\text{out}} \times a^{\text{out}} b^{\text{out}}}. \]

- A comparison with (6) shows that \(M^i \) is in a similar role to the weight matrix \(W \) though \(M^i \) is a constant

- By combining (12) and (14), we have

 \[Z^{\text{out},i} = \text{mat} \left(P_{\text{pool}}^i \text{vec}(Z^{\text{in},i}) \right)_{d^{\text{out}} \times a^{\text{out}} b^{\text{out}}}, \]

 where

 \[P_{\text{pool}}^i = M^i P_\phi \in R^{d^{\text{out}} a^{\text{out}} b^{\text{out}} \times d^{\text{in}} a^{\text{in}} b^{\text{in}}}. \]
Pooling VIII
Summary of a Convolutional Layer I

- For implementation, padding and pooling are (optional) part of the convolutional layers.
- We discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

\[
Z^{m,i} \rightarrow \text{padding by (11)} \rightarrow \\
\text{convolutional operations by (6), (7)} \rightarrow \\
\text{pooling by (15)} \rightarrow Z^{m+1,i}, \quad (17)
\]
where $Z^{m,i}$ and $Z^{m+1,i}$ are input and output of the mth layer, respectively.

- Let the following symbols denote image sizes at different stages of the convolutional layer.

$$a^m, b^m : \text{ size in the beginning}$$
$$a^m_{\text{pad}}, b^m_{\text{pad}} : \text{ size after padding}$$
$$a^m_{\text{conv}}, b^m_{\text{conv}} : \text{ size after convolution.}$$

- The following table indicates how these values are $a^{\text{in}}, b^{\text{in}}, d^{\text{in}}$ and $a^{\text{out}}, b^{\text{out}}, d^{\text{out}}$ at different stages.
Summary of a Convolutional Layer III

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>$Z^{m,i}$</td>
<td>$\text{pad}(Z^{m,i})$</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>$\text{pad}(Z^{m,i})$</td>
<td>$S^{m,i}$</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>$S^{m,i}$</td>
<td>$\sigma(S^{m,i})$</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>$\sigma(S^{m,i})$</td>
<td>$Z^{m+1,i}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>$a^{\text{in}}, b^{\text{in}}, d^{\text{in}}$</th>
<th>$a^{\text{out}}, b^{\text{out}}, d^{\text{out}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>a^{m}, b^{m}, d^{m}</td>
<td>$a_{\text{pad}}^{m}, b_{\text{pad}}^{m}, d^{m}$</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>$a_{\text{pad}}^{m}, b_{\text{pad}}^{m}, d^{m}$</td>
<td>$a_{\text{conv}}^{m}, b_{\text{conv}}^{m}, d^{m+1}$</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>$a_{\text{conv}}^{m}, b_{\text{conv}}^{m}, d^{m+1}$</td>
<td>$a_{\text{conv}}^{m+1}, b_{\text{conv}}^{m+1}, d^{m+1}$</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>$a_{\text{conv}}^{m}, b_{\text{conv}}^{m}, d^{m+1}$</td>
<td>$a_{\text{conv}}^{m+1}, b_{\text{conv}}^{m+1}, d^{m+1}$</td>
</tr>
</tbody>
</table>
Summary of a Convolutional Layer IV

- Let the filter size, mapping matrices and weight matrices at the \(m \)th layer be

\[
h^m, \quad P^m_{\text{pad}}, \quad P^m_{\phi}, \quad P^m_{\text{pool}}, \quad W^m, \quad b^m.
\]

- From (11), (6), (7), (15), all operations can be summarized as

\[
S^{m,i} = W^m \text{mat}(P^m_{\phi} P^m_{\text{pad}} \text{vec}(Z^{m,i})) h^m h^m d^m \otimes a^m_{\text{conv}} b^m_{\text{conv}} + b^m 1^T_{a_{\text{conv}} b_{\text{conv}}}
\]

\[
Z^{m+1,i} = \text{mat}(P^m_{\text{pool}} \text{vec}(\sigma(S^{m,i}))) d^{m+1} \otimes a^{m+1} b^{m+1},
\]

(18)
Optimization problem for convolutional neural networks (CNN)

Fully-Connected Layer 1

- Input vector of the first fully-connected layer:

 \[z^{m,i} = \text{vec}(Z^{m,i}), \quad i = 1, \ldots, l, \quad m = L^c + 1. \]

- In each of the fully-connected layers \((L^c < m \leq L)\), we consider weight matrix and bias vector between layers \(m\) and \(m + 1\).
Fully-Connected Layer II

- **Weight matrix:**

\[
W^m = \begin{bmatrix}
 w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
 w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{n_{m+1}1}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m \\
\end{bmatrix}_{n_{m+1} \times n_m}
\]

- **Bias vector**

\[
b^m = \begin{bmatrix}
 b_1^m \\
 b_2^m \\
 \vdots \\
 b_{n_{m+1}}^m \\
\end{bmatrix}_{n_{m+1} \times 1}
\]
Here n_m and n_{m+1} are the numbers of nodes in layers m and $m + 1$, respectively.

- If $z^{m,i} \in \mathbb{R}^{n_m}$ is the input vector, the following operations are applied to generate the output vector $z^{m+1,i} \in \mathbb{R}^{n_{m+1}}$.

\begin{align*}
\mathbf{s}^{m,i} &= W^m z^{m,i} + b^m, \\
\mathbf{z}^{m+1,i} &= \sigma(\mathbf{s}^{m,i}), \quad j = 1, \ldots, n_{m+1}.
\end{align*}

(20)

(21)
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Chih-Jen Lin (National Taiwan Univ.)

Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima
- Traditionally global optimization is much more difficult than local minimization
- The problem structure is very complicated
- In this course we will have first-hand experiences on these difficulties
Formulation I

- We have written all CNN operations in matrix/vector forms
- This is useful in deriving the gradient
- Are our representation symbols good enough? Can we do better?
- You can say that this is only a matter of notation, but given the wide use of CNN, a good formulation can be extremely useful

