Optimization Problems for Neural Networks

Chih-Jen Lin
National Taiwan University

Last updated: May 25, 2020
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Outline

1. Regularized linear classification

2. Optimization problem for fully-connected networks

3. Optimization problem for convolutional neural networks (CNN)

4. Discussion
Minimizing Training Errors

Basically a classification method starts with minimizing the training errors

\[\min_{\text{model}} \text{ (training errors)} \]

That is, all or most training data with labels should be correctly classified by our model

A model can be a decision tree, a neural network, or other types
For simplicity, let’s consider the model to be a vector \mathbf{w}.

That is, the decision function is

$$\text{sgn}(\mathbf{w}^T \mathbf{x})$$

For any data, \mathbf{x}, the predicted label is

$$\begin{cases}
1 & \text{if } \mathbf{w}^T \mathbf{x} \geq 0 \\
-1 & \text{otherwise}
\end{cases}$$
Minimizing Training Errors (Cont’d)

- The two-dimensional situation
 \[w^T x = 0 \]

- This seems to be quite restricted, but practically \(x \) is in a much higher dimensional space
To characterize the training error, we need a loss function $\xi(w; y, x)$ for each instance (y, x), where $y = \pm 1$ is the label and x is the feature vector.

Ideally we should use 0–1 training loss:

$$\xi(w; y, x) = \begin{cases} 1 & \text{if } y w^T x < 0, \\ 0 & \text{otherwise} \end{cases}$$
However, this function is discontinuous. The optimization problem becomes difficult

$$\xi(w; y, x)$$

We need continuous approximations
Common Loss Functions

- Hinge loss (l1 loss)

\[
\xi_{L1}(\mathbf{w}; y, x) \equiv \max(0, 1 - y\mathbf{w}^T x) \quad (1)
\]

- Logistic loss

\[
\xi_{LR}(\mathbf{w}; y, x) \equiv \log(1 + e^{-y\mathbf{w}^T x}) \quad (2)
\]

- Support vector machines (SVM): Eq. (1). Logistic regression (LR): (2)

- SVM and LR are two very fundamental classification methods
Regularized linear classification

Common Loss Functions (Cont’d)

\[\xi(w; y, x) \]

- \[\xi_{L1} \]
- \[\xi_{LR} \]

- Logistic regression is very related to SVM
- Their performance is usually similar
However, minimizing training losses may not give a good model for future prediction.

Overfitting occurs.
Overfitting

- See the illustration in the next slide
- For classification,
 You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should
 Avoid underfitting: small training error
 Avoid overfitting: small testing error
● and ▲: training; ○ and △: testing
Regularization

- To minimize the training error we manipulate the w vector so that it fits the data.
- To avoid overfitting we need a way to make w’s values less extreme.
- One idea is to make w values closer to zero.
- We can add, for example,
 \[\frac{w^T w}{2} \text{ or } \|w\|_1 \]
 to the function that is minimized.
General Form of Linear Classification

- Training data \(\{y_i, x_i\}, x_i \in \mathbb{R}^n, i = 1, \ldots, l, y_i = \pm 1 \)
- \(l \): # of data, \(n \): # of features

\[
\min_{w} f(w), \quad f(w) \equiv \frac{w^T w}{2} + C \sum_{i=1}^{l} \xi(w; y_i, x_i)
\]

- \(w^T w / 2 \): regularization term
- \(\xi(w; y, x) \): loss function
- \(C \): regularization parameter (chosen by users)
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Multi-class Classification I

- Our training set includes \((y^i, x^i), \ i = 1, \ldots, l\).
- \(x^i \in \mathbb{R}^{n_1}\) is the feature vector.
- \(y^i \in \mathbb{R}^K\) is the label vector.
- As label is now a vector, we change (label, instance) from \((y_i, x_i)\) to \((y^i, x^i)\)
- \(K\): # of classes
- If \(x^i\) is in class \(k\), then

\[
y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K
\]
A neural network maps each feature vector to one of the class labels by the connection of nodes.
Fully-connected Networks

- Between two layers a weight matrix maps inputs (the previous layer) to outputs (the next layer).
Operations Between Two Layers I

The weight matrix W^m at the mth layer is

$$W^m = \begin{bmatrix}
 w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
 w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{n_{m+1}}^m & w_{n_{m+1}}^m & \cdots & w_{n_{m+1}n_m}^m \
\end{bmatrix}_{n_{m+1} \times n_m}$$

- n_m: # input features at layer m
- n_{m+1}: # output features at layer m, or # input features at layer $m + 1$
- L: number of layers
Optimization problem for fully-connected networks

Operations Between Two Layers II

- \(n_1 = \# \) of features, \(n_{L+1} = \# \) of classes
- Let \(z^m \) be the input of the \(m \)th layer, \(z^1 = x \) and \(z^{L+1} \) be the output
- From \(m \)th layer to \((m + 1) \)th layer

\[
\begin{align*}
 s^m &= W^m z^m, \\
 z_{j}^{m+1} &= \sigma(s_{j}^m), \quad j = 1, \ldots, n_{m+1},
\end{align*}
\]

\(\sigma(\cdot) \) is the activation function.
Usually people do a bias term

\[
\begin{bmatrix}
 b_1^m \\
 b_2^m \\
 \vdots \\
 b_{n_{m+1}}^m
\end{bmatrix}_{n_{m+1} \times 1},
\]

so that

\[
s^m = W^m z^m + b^m
\]
Optimization problem for fully-connected networks

Operations Between Two Layers IV

- Activation function is usually an $R \rightarrow R$ transformation. As we are interested in optimization, let’s not worry about why it’s needed.

- We collect all variables:

$$\theta = \begin{bmatrix} \text{vec}(W^1) \\ b^1 \\ \vdots \\ \text{vec}(W^L) \\ b^L \end{bmatrix} \in \mathbb{R}^n$$
Operations Between Two Layers V

\[n : \text{total \# variables} = (n_1 + 1)n_2 + \cdots + (n_L + 1)n_{L+1} \]

- The \(\text{vec}(\cdot) \) operator stacks columns of a matrix to a vector
Optimization Problem I

- We solve the following optimization problem,

\[
\min_{\theta} \ f(\theta), \quad \text{where} \\
\]

\[
f(\theta) = \frac{1}{2} \theta^T \theta + C \sum_{i=1}^{l} \xi(z^{L+1,i}(\theta); y^i, x^i).
\]

- \(C \): regularization parameter

- \(z^{L+1}(\theta) \in R^{n_{L+1}} \): last-layer output vector of \(x \).

- \(\xi(z^{L+1}; y, x) \): loss function. Example:

\[
\xi(z^{L+1}; y, x) = \| z^{L+1} - y \|^2
\]
Optimization Problem II

- The formulation is same as linear classification
- However, the loss function is more complicated
- Further, it’s non-convex
- Note that in the earlier discussion we consider a single instance
- In the training process we actually have for $i = 1, \ldots, l$,

 \[s^{m,i} = W^m z^{m,i}, \]
 \[z_{j}^{m+1,i} = \sigma(s_j^{m,i}), \quad j = 1, \ldots, n_{m+1}, \]

 This makes the training more complicated
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Why CNN? I

- There are many types of neural networks
- They are suitable for different types of problems
- While deep learning is hot, it’s not always better than other learning methods
- For example, fully-connected networks were evaluated for general classification data (e.g., data from UCI machine learning repository)
- They are not consistently better than random forests or SVM; see the comparisons (Meyer et al., 2003; Fernández-Delgado et al., 2014; Wang et al., 2018).
Why CNN? II

- We are interested in CNN because it’s shown to be significantly better than others on image data.
- That’s one of the main reasons deep learning becomes popular.
- To study optimization algorithms, of course we want to consider an “established” network.
- That’s why CNN was chosen for our discussion.
- However, the problem is that operations in CNN are more complicated than fully-connected networks.
- Most books/papers only give explanation without detailed mathematical forms.
To study the optimization, we need some clean formulations
So let’s give it a try here
Consider a K-class classification problem with training data

$$(y^i, Z^{1,i}), \quad i = 1, \ldots, l.$$

y^i: label vector \hspace{1cm} $Z^{1,i}$: input image

If $Z^{1,i}$ is in class k, then

$$y^i = [0, \ldots, 0, 1, 0, \ldots, 0]_T \in \mathbb{R}^K.$$

CNN maps each image $Z^{1,i}$ to y^i
Typically, CNN consists of multiple convolutional layers followed by fully-connected layers.

Input and output of a convolutional layer are assumed to be *images*.
For the current layer, let the input be an image $Z^{in}: a^{in} \times b^{in} \times d^{in}$.

a^{in}: height, b^{in}: width, and d^{in}: #channels.
The goal is to generate an output image $Z_{\text{out},i}$ of d_{out} channels of $a_{\text{out}} \times b_{\text{out}}$ images.

- Consider d_{out} filters.
- Filter $j \in \{1, \ldots, d_{\text{out}}\}$ has dimensions $h \times h \times d_{\text{in}}$.

$$
\begin{bmatrix}
 w^j_{1,1,1} & w^j_{1,h,1} \\
 \cdots & \cdots \\
 w^j_{h,1,1} & w^j_{h,h,1}
\end{bmatrix},
\begin{bmatrix}
 w^j_{1,1,d_{\text{in}}} & w^j_{1,h,d_{\text{in}}} \\
 \cdots & \cdots \\
 w^j_{h,1,d_{\text{in}}} & w^j_{h,h,d_{\text{in}}}
\end{bmatrix}
$$
To compute the jth channel of output, we scan the input from top-left to bottom-right to obtain the sub-images of size $h \times h \times d^{in}$.
We then calculate the inner product between each sub-image and the jth filter.

For example, if we start from the upper left corner of the input image, the first sub-image of channel d is

$$
\begin{bmatrix}
 z_{1,1,d}^i & \cdots & z_{1,h,d}^i \\
 \vdots & \ddots & \vdots \\
 z_{h,1,d}^i & \cdots & z_{h,h,d}^i
\end{bmatrix}.
$$
We then calculate

\[
\sum_{d=1}^{d^\text{in}} \langle \begin{bmatrix} z_{1,1,d}^i & \cdots & z_{1,h,d}^i \\ \vdots & \ddots & \vdots \\ z_{h,1,d}^i & \cdots & z_{h,h,d}^i \end{bmatrix}, \begin{bmatrix} w_{1,1,d}^j & \cdots & w_{1,h,d}^j \\ \vdots & \ddots & \vdots \\ w_{h,1,d}^j & \cdots & w_{h,h,d}^j \end{bmatrix} \rangle + b_j,
\]

where \(\langle \cdot, \cdot \rangle \) means the sum of component-wise products between two matrices.

* This value becomes the \((1,1)\) position of the channel \(j\) of the output image.
Next, we use other sub-images to produce values in other positions of the output image.

Let the stride s be the number of pixels vertically or horizontally to get sub-images.

For the $(2, 1)$ position of the output image, we move down s pixels vertically to obtain the following sub-image:

\[
\begin{bmatrix}
 z_{1+s,1,d}^i & \cdots & z_{1+s,h,d}^i \\
 \vdots & \ddots & \vdots \\
 z_{h+s,1,d}^i & \cdots & z_{h+s,h,d}^i
\end{bmatrix}.
\]
Convolutional Layers VII

The \((2, 1)\) position of the channel \(j\) of the output image is

\[
\sum_{d=1}^{d^{\text{in}}} \left\langle \begin{bmatrix}
Z^j_{1+s,1,d} & \cdots & Z^j_{1+s,h,d} \\
\vdots & \ddots & \vdots \\
Z^j_{h+s,1,d} & \cdots & Z^j_{h+s,h,d}
\end{bmatrix}, \begin{bmatrix}
w^j_{1,1,d} & \cdots & w^j_{1,h,d} \\
\vdots & \ddots & \vdots \\
w^j_{h,1,d} & \cdots & w^j_{h,h,d}
\end{bmatrix} \right\rangle + b_j.
\] (4)
The output image size a^{out} and b^{out} are respectively numbers that vertically and horizontally we can move the filter

$$a^{\text{out}} = \left\lfloor \frac{a^{\text{in}} - h}{s} \right\rfloor + 1, \quad b^{\text{out}} = \left\lfloor \frac{b^{\text{in}} - h}{s} \right\rfloor + 1 \quad (5)$$

Rationale of (5): vertically last row of each sub-image is

$$h, h + s, \ldots, h + \Delta s \leq a^{\text{in}}$$
Thus

\[\Delta = \left\lfloor \frac{a^{in} - h}{s} \right\rfloor \]
For efficient implementations, we should conduct convolutional operations by matrix-matrix and matrix-vector operations.

We will go back to this issue later.
Let’s collect images of all channels as the input

\[Z^{\text{in},i} = \begin{bmatrix}
 z_{1,1,1}^i & z_{2,1,1}^i & \cdots & z_{a^{\text{in}},b^{\text{in}},1}^i \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{1,1,d^{\text{in}}}^i & z_{2,1,d^{\text{in}}}^i & \cdots & z_{a^{\text{in}},b^{\text{in}},d^{\text{in}}}^i \\
\end{bmatrix} \in \mathbb{R}^{d^{\text{in}} \times a^{\text{in}} b^{\text{in}}} \]
Let all filters

\[W = \begin{bmatrix}
 w_{1,1,1}^1 & w_{2,1,1}^1 & \cdots & w_{h,h,d_{\text{in}}}^1 \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{1,1,1}^{d_{\text{out}}} & w_{2,1,1}^{d_{\text{out}}} & \cdots & w_{h,h,d_{\text{in}}}^{d_{\text{out}}}
\end{bmatrix} \in \mathbb{R}^{d_{\text{out}} \times hhd_{\text{in}}}
\]

be variables (parameters) of the current layer.
Usually a bias term is considered:

\[b = \begin{bmatrix} b_1 \\ \vdots \\ b_{d_{\text{out}}} \end{bmatrix} \in \mathbb{R}^{d_{\text{out}} \times 1} \]

Operations at a layer:

\[S^{\text{out},i} = \mathbf{W} \phi(Z^{\text{in},i}) + b_1^T a_{\text{out}} b_{\text{out}} \]

\[\in \mathbb{R}^{d_{\text{out}} \times a_{\text{out}} b_{\text{out}}} \]
where

\[
\mathbf{1}_{a_{\text{out}} b_{\text{out}}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^{a_{\text{out}} b_{\text{out}} \times 1}.
\]

\[\phi(Z_{\text{in},i})\] collects all sub-images in \(Z_{\text{in},i}\) into a matrix.
Specifically,

\[
\phi(Z_{\text{in},i}) = \begin{bmatrix}
Z_{1,1,1}^i & Z_{1+s,1,1}^i \\
Z_{2,1,1}^i & Z_{2+s,1,1}^i \\
\vdots & \vdots & \ddots \\
Z_{h,h,1}^i & Z_{h+s,h,1}^i \\
Z_{h,h,d_{\text{in}}}^i & Z_{h+s,h,d_{\text{in}}}^i
\end{bmatrix} \\
\in \mathbb{R}^{hhd_{\text{in}} \times a_{\text{out}} b_{\text{out}}}
\]

\[
Z_{1}^{i} + (a_{\text{out}} - 1)s, 1 + (b_{\text{out}} - 1)s, 1 \\
Z_{2}^{i} + (a_{\text{out}} - 1)s, 1 + (b_{\text{out}} - 1)s, 1 \\
\vdots \\
Z_{h}^{i} + (a_{\text{out}} - 1)s, h + (b_{\text{out}} - 1)s, 1 \\
Z_{h}^{i} + (a_{\text{out}} - 1)s, h + (b_{\text{out}} - 1)s, d_{\text{in}}
\]
Activation Function I

- Next, an activation function scales each element of $S^{out,i}$ to obtain the output matrix $Z^{out,i}$.

$$Z^{out,i} = \sigma(S^{out,i}) \in \mathbb{R}^{d_{out} \times a_{out} b_{out}}. \quad (7)$$

- For CNN, commonly the following RELU activation function

$$\sigma(x) = \max(x, 0) \quad (8)$$

is used

- Later we need that $\sigma(x)$ is differentiable, but the RELU function is not.
Past works such as Krizhevsky et al. (2012) assume

\[\sigma'(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{otherwise}
\end{cases} \]
The Function $\phi(Z^{\text{in},i})$

- In the matrix-matrix product
 \[W\phi(Z^{\text{in},i}), \]
 each element is the inner product between a filter and a sub-image.
- We need to represent $\phi(Z^{\text{in},i})$ in an explicit form.
- This is important for subsequent calculation.
- Clearly ϕ is a linear mapping, so there exists a 0/1 matrix P_ϕ such that
 \[\phi(Z^{\text{in},i}) \equiv \text{mat} \left(P_\phi \text{vec}(Z^{\text{in},i}) \right)_{hhd^{\text{in}} \times a \times b^{\text{out}}}, \forall i, \]
 \[(9) \]
The Function $\phi(Z^{in,i})$}

- $\text{vec}(M)$: all M's columns concatenated to a vector \mathbf{v}

$$
\text{vec}(M) = \begin{bmatrix}
M_{:,1} \\
\vdots \\
M_{:,b}
\end{bmatrix} \in \mathbb{R}^{ab \times 1}, \text{ where } M \in \mathbb{R}^{a \times b}
$$

- $\text{mat}(\mathbf{v})$ is the inverse of $\text{vec}(M)$

$$
\text{mat}(\mathbf{v})_{a \times b} = \begin{bmatrix}
\mathbf{v}_1 & \mathbf{v}_{(b-1)a+1} \\
\vdots & \vdots \\
\mathbf{v}_a & \mathbf{v}_{ba}
\end{bmatrix} \in \mathbb{R}^{a \times b}, \quad (10)
$$
The Function $\phi(Z^{\text{in}},i)$ III

where

$$v \in \mathbb{R}^{ab \times 1}.$$

- P_ϕ is a huge matrix:

$$P_\phi \in \mathbb{R}^{hhd^{\text{in}} a^{\text{out}} b^{\text{out}} \times d^{\text{in}} a^{\text{in}} b^{\text{in}}}$$

and

$$\phi : \mathbb{R}^{d^{\text{in}} \times a^{\text{in}} b^{\text{in}}} \rightarrow \mathbb{R}^{hhd^{\text{in}} \times a^{\text{out}} b^{\text{out}}}$$

- Later we will check implementation details
- Past works using the form (9) include, for example, Vedaldi and Lenc (2015)
Optimization Problem I

- We collect all weights to a vector variable θ.

$$\theta = \begin{bmatrix}
\text{vec}(W^1) \\
\mathbf{b}^1 \\
\vdots \\
\text{vec}(W^L) \\
\mathbf{b}^L
\end{bmatrix} \in \mathbb{R}^n, \quad n: \text{total \# variables}$$

- The output of the last layer L is a vector $z^{L+1,i}(\theta)$.

- Consider any loss function such as the squared loss

$$\xi_i(\theta) = \|z^{L+1,i}(\theta) - y^i\|^2.$$
Optimization Problem II

The optimization problem is

$$\min_{\theta} f(\theta),$$

where

$$f(\theta) = \frac{1}{2C} \theta^T \theta + \frac{1}{l} \sum_{i=1}^{l} \xi(z^{L+1,i}(\theta); y^i, Z^{1,i})$$

C: regularization parameter.

The formulation is almost the same as that for fully connected networks.
Optimization Problem III

- Note that we divide the sum of training losses by the number of training data.
 Thus the second term becomes the average training loss.
- With the optimization problem, there is still a long way to do a real implementation.
- Further, CNN involves additional operations in practice.
 - padding
 - pooling
- We will explain them.
Zero Padding I

- To better control the size of the output image, before the convolutional operation we may enlarge the input image to have zero values around the border.

- This technique is called zero-padding in CNN training.

- An illustration:
Zero Padding II

Optimization problem for convolutional neural networks (CNN)

An input image

\[
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}^a_{in}
\]

\[
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}^b_{in}
\]

Chih-Jen Lin (National Taiwan Univ.)
Zero Padding III

- The size of the new image is changed from
 \[a^{\text{in}} \times b^{\text{in}} \] to \((a^{\text{in}} + 2p) \times (b^{\text{in}} + 2p) \),

where \(p \) is specified by users.

- The operation can be treated as a layer of mapping an input \(Z^{\text{in},i} \) to an output \(Z^{\text{out},i} \).

- Let
 \[d^{\text{out}} = d^{\text{in}}. \]
Zero Padding IV

- There exists a 0/1 matrix
 \[P_{pad} \in \mathbb{R}^{d_{out}a_{out}b_{out} \times d_{in}a_{in}b_{in}} \]
 so that the padding operation can be represented by
 \[Z^{out,i} \equiv \text{mat}(P_{pad}\text{vec}(Z^{in,i}))_{d_{out} \times a_{out}b_{out}}. \]

- Implementation details will be discussed later
To reduce the computational cost, a dimension reduction is often applied by a pooling step after convolutional operations.

Usually we consider an operation that can (approximately) extract rotational or translational invariance features.

Examples: average pooling, max pooling, and stochastic pooling,

Let’s consider max pooling as an illustration.
Pooling II

- An example:

\[
\begin{bmatrix}
2 & 3 & 6 & 8 \\
5 & 4 & 9 & 7 \\
1 & 2 & 6 & 0 \\
4 & 3 & 2 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
5 & 9 \\
4 & 6
\end{bmatrix}
\]

\[
\begin{bmatrix}
3 & 2 & 3 & 6 \\
4 & 5 & 4 & 9 \\
2 & 1 & 2 & 6 \\
3 & 4 & 3 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
5 & 9 \\
4 & 6
\end{bmatrix}
\]
Pooling III

- B is derived by shifting A by 1 pixel in the horizontal direction.
- We split two images into four 2×2 sub-images and choose the max value from every sub-image.
- In each sub-image because only some elements are changed, the maximal value is likely the same or similar.
- This is called translational invariance.
- For our example the two output images from A and B are the same.
For mathematical representation, we consider the operation as a layer of mapping an input $Z^{in,i}$ to an output $Z^{out,i}$.

In practice pooling is considered as an operation at the end of the convolutional layer.

We partition every channel of $Z^{in,i}$ into non-overlapping sub-regions by $h \times h$ filters with the stride $s = h$.

Because of the disjoint sub-regions, the stride s for sliding the filters is equal to h.
Poolings V

- This partition step is a special case of how we generate sub-images in convolutional operations.
- By the same definition as (9) we can generate the matrix

\[
\phi(Z_{\text{in},i}) = \text{mat}(P_{\phi}\text{vec}(Z_{\text{in},i}))_{hh \times d_{\text{out}} a_{\text{out}} b_{\text{out}}}, \quad (12)
\]

where

\[
a_{\text{out}} = \left[\frac{a_{\text{in}}}{h} \right], \quad b_{\text{out}} = \left[\frac{b_{\text{in}}}{h} \right], \quad d_{\text{out}} = d_{\text{in}}. \quad (13)
\]
Pooling VI

- This is the same from the calculation in (5) as

\[
\left\lfloor \frac{a^{in} - h}{h} \right\rfloor + 1 = \left\lfloor \frac{a^{in}}{h} \right\rfloor
\]

- Note that here we consider \(hh \times d^{out} a^{out} b^{out} \) rather than \(hhd^{out} \times a^{out} b^{out} \)

because we can then do a max operation on each column
To select the largest element of each sub-region, there exists a 0/1 matrix

$$M^i \in \mathbb{R}^{d_{out} \times a_{out} \times h d_{out} \times a_{out} \times b_{out}}$$

so that each row of M^i selects a single element from $\text{vec}(\phi(Z^{in,i}))$.

Therefore,

$$Z^{out,i} = \text{mat} \left(M^i \text{vec}(\phi(Z^{in,i})) \right)_{d_{out} \times a_{out} \times b_{out}}.$$ \hspace{1cm} (14)
Pooling VIII

A comparison with (6) shows that M^i is in a similar role to the weight matrix W

While M^i is 0/1, it is not a constant. It’s positions of 1’s depend on the values of $\phi(Z^{in,i})$

By combining (12) and (14), we have

$$Z^{out,i} = \text{mat} \left(P^i_{\text{pool}} \text{vec}(Z^{in,i}) \right)_{d^{out} \times a^{out} b^{out}}, \quad (15)$$

where

$$P^i_{\text{pool}} = M^i P_\phi \in \mathbb{R}^{d^{out} a^{out} b^{out} \times d^{in} a^{in} b^{in}}. \quad (16)$$
Summary of a Convolutional Layer I

- For implementation, padding and pooling are (optional) part of the convolutional layers.
- We discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

\[Z^{m,i} \rightarrow \text{padding by (11)} \rightarrow \text{convolutional operations by (6), (7)} \rightarrow \text{pooling by (15)} \rightarrow Z^{m+1,i}, \quad (17) \]
where $Z_{m,i}^m$ and $Z_{m+1,i}^{m+1}$ are input and output of the mth layer, respectively.

- Let the following symbols denote image sizes at different stages of the convolutional layer.

\[
\begin{align*}
a_m^m, b_m^m &: \text{ size in the beginning} \\
a_{\text{pad}}^m, b_{\text{pad}}^m &: \text{ size after padding} \\
a_{\text{conv}}^m, b_{\text{conv}}^m &: \text{ size after convolution.}
\end{align*}
\]

- The following table indicates how these values are $a_{\text{in}}^m, b_{\text{in}}^m, d_{\text{in}}^m$ and $a_{\text{out}}^m, b_{\text{out}}^m, d_{\text{out}}^m$ at different stages.
Summary of a Convolutional Layer III

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>$Z_{m,i}$</td>
<td>pad($Z_{m,i}$)</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>pad($Z_{m,i}$)</td>
<td>$S_{m,i}$</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>$S_{m,i}$</td>
<td>$\sigma(S_{m,i})$</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>$\sigma(S_{m,i})$</td>
<td>$Z_{m+1,i}$</td>
</tr>
</tbody>
</table>

Operation Parameters

<table>
<thead>
<tr>
<th>Operation</th>
<th>a_{in}, b_{in}, d_{in}</th>
<th>a_{out}, b_{out}, d_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>a_{m}, b_{m}, d_{m}</td>
<td>a_{pad}, b_{pad}, d_{m}</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>a_{pad}, b_{pad}, d_{m}</td>
<td>a_{conv}, b_{conv}, d_{m+1}</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>a_{conv}, b_{conv}, d_{m+1}</td>
<td>a_{conv}, b_{conv}, d_{m+1}</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>a_{conv}, b_{conv}, d_{m+1}</td>
<td>a_{m+1}, b_{m+1}, d_{m+1}</td>
</tr>
</tbody>
</table>
Summary of a Convolutional Layer IV

- Let the filter size, mapping matrices and weight matrices at the mth layer be

$$h^m, P^m_{\text{pad}}, P^m_{\phi}, P^m_{\text{pool}}, W^m, b^m.$$

- From (11), (6), (7), (15), all operations can be summarized as

$$S^{m,i} = W^m \text{mat}(P^m_{\phi} P^m_{\text{pad}} \text{vec} (Z^{m,i})) h^m h^m d^m \times a^m_{\text{conv}} b^m_{\text{conv}} + b^m 1_{a^m_{\text{conv}}}^T b^m_{\text{conv}} $$

$$Z^{m+1,i} = \text{mat}(P^m_{\text{pool}} \text{vec}(\sigma(S^{m,i}))) d^{m+1} \times a^{m+1} b^{m+1},$$

(18)
• Assume L^C is the number of convolutional layers.
• Input vector of the first fully-connected layer:

$$z^{m,i} = \text{vec}(Z^{m,i}), \quad i = 1, \ldots, l, \quad m = L^c + 1.$$

• In each of the fully-connected layers ($L^c < m \leq L$), we consider weight matrix and bias vector between layers m and $m + 1.$
Fully-Connected Layer II

- Weight matrix:

\[
W^m = \begin{bmatrix}
w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{m+1}1}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m
\end{bmatrix}_{n_m+1 \times n_m}
\] (19)

- Bias vector

\[
b^m = \begin{bmatrix}
b_1^m \\
b_2^m \\
\vdots \\
b_{n_{m+1}}^m
\end{bmatrix}_{n_{m+1} \times 1}
\]
Here n_m and n_{m+1} are the numbers of nodes in layers m and $m + 1$, respectively.

If $z^{m,i} \in R^{n_m}$ is the input vector, the following operations are applied to generate the output vector $z^{m+1,i} \in R^{n_{m+1}}$.

$$s^{m,i} = W^m z^{m,i} + b^m,$$

$$z^{m+1,i}_j = \sigma(s^{m,i}_j), \quad j = 1, \ldots, n_{m+1}.$$
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima.
- It’s known that global optimization is much more difficult than local minimization.
- The problem structure is very complicated.
- In this course we will have first-hand experiences on handling these difficulties.
Formulation I

- We have written all CNN operations in matrix/vector forms
- This is useful in deriving the gradient
- Are our representation symbols good enough? Can we do better?
- You can say that this is only a matter of notation, but given the wide use of CNN, a good formulation can be extremely useful

