Optimization Problems for Neural Networks

Chih-Jen Lin
National Taiwan University

Last updated: March 9, 2020
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Minimizing Training Errors

- Basically a classification method starts with minimizing the training errors
 \[
 \min_{\text{model}} \text{(training errors)}
 \]

- That is, all or most training data with labels should be correctly classified by our model

- A model can be a decision tree, a neural network, or other types
For simplicity, let’s consider the model to be a vector \mathbf{w}.

That is, the decision function is

$$\text{sgn}(\mathbf{w}^T \mathbf{x})$$

For any data, \mathbf{x}, the predicted label is

$$\begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} \geq 0 \\ -1 & \text{otherwise} \end{cases}$$
Minimizing Training Errors (Cont’d)

- The two-dimensional situation
 \[w^T x = 0 \]

- This seems to be quite restricted, but practically \(x \) is in a much higher dimensional space
To characterize the training error, we need a loss function $\xi(w; y, x)$ for each instance (y, x), where $y = \pm 1$ is the label and x is the feature vector.

Ideally we should use 0–1 training loss:

$$\xi(w; y, x) = \begin{cases} 1 & \text{if } y w^T x < 0, \\ 0 & \text{otherwise} \end{cases}$$
However, this function is discontinuous. The optimization problem becomes difficult

$$\xi(w; y, x)$$

We need continuous approximations
Common Loss Functions

- Hinge loss (l1 loss)
 \[\xi_{L1}(w; y, x) \equiv \max(0, 1 - yw^T x) \] (1)

- Logistic loss
 \[\xi_{LR}(w; y, x) \equiv \log(1 + e^{-yw^T x}) \] (2)

- Support vector machines (SVM): Eq. (1). Logistic regression (LR): (2)
- SVM and LR are two very fundamental classification methods
Logistic regression is very related to SVM

Their performance is usually similar
Common Loss Functions (Cont’d)

- However, minimizing training losses may not give a good model for future prediction
- Overfitting occurs
Overfitting

- See the illustration in the next slide
- For classification,
 You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should
 Avoid underfitting: small training error
 Avoid overfitting: small testing error
Regularized linear classification

● and ▲: training; ○ and △: testing
To minimize the training error we manipulate the w vector so that it fits the data.

To avoid overfitting we need a way to make w’s values less extreme.

One idea is to make w values closer to zero.

We can add, for example,

$$\frac{w^T w}{2} \quad \text{or} \quad \|w\|_1$$

to the function that is minimized.
Regularized linear classification

General Form of Linear Classification

- Training data \(\{y_i, x_i\}, x_i \in \mathbb{R}^n, i = 1, \ldots, l, y_i = \pm 1 \)
- \(l \): # of data, \(n \): # of features

\[
\min_w f(w), \quad f(w) \equiv \frac{w^T w}{2} + C \sum_{i=1}^{l} \xi(w; y, x_i)
\]

- \(w^T w/2 \): regularization term
- \(\xi(w; y, x) \): loss function
- \(C \): regularization parameter (chosen by users)
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Multi-class Classification I

- Our training set includes \((y^i, x^i), \ i = 1, \ldots, l\).
- \(x^i \in \mathbb{R}^{n_1}\) is the feature vector.
- \(y^i \in \mathbb{R}^K\) is the label vector.
- As label is now a vector, we change (label, instance) from \((y_i, x_i)\) to \((y^i, x^i)\)
- \(K:\ \text{# of classes}\)
- If \(x^i\) is in class \(k\), then
 \[
y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K
 \]
A neural network maps each feature vector to one of the class labels by the connection of nodes.
Between two layers a weight matrix maps inputs (the previous layer) to outputs (the next layer).
Optimization problem for fully-connected networks

Operations Between Two Layers I

- The weight matrix W^m at the mth layer is

$$ W^m = \begin{bmatrix} w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\ w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{m+1}}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m \end{bmatrix}_{n_{m+1} \times n_m} $$

- n_m: # input features at layer m
- n_{m+1}: # output features at layer m, or # input features at layer $m+1$
- L: number of layers
Operations Between Two Layers II

- $n_1 = \# \text{ of features}$, $n_{L+1} = \# \text{ of classes}$
- Let z^m be the input of the mth layer, $z^1 = x$ and z^{L+1} be the output
- From mth layer to $(m + 1)$th layer

$$s^m = W^m z^m,$$

$$z_j^{m+1} = \sigma(s_j^m), \ j = 1, \ldots, n_{m+1},$$

$\sigma(\cdot)$ is the activation function.
Usually people do a bias term

\[
\begin{bmatrix}
b_1^m \\
b_2^m \\
\vdots \\
b_{n_{m+1}}^m
\end{bmatrix}_{n_{m+1}\times 1},
\]

so that

\[s^m = W^m z^m + b^m\]
Optimization problem for fully-connected networks

Operations Between Two Layers IV

- Activation function is usually an

\[R \rightarrow R \]

transformation. As we are interested in optimization, let’s not worry about why it’s needed.

- We collect all variables:

\[
\theta = \begin{bmatrix}
\vec(W^{1}) \\
b^{1} \\
\vdots \\
\vec(W^{L}) \\
b^{L}
\end{bmatrix} \in R^{n}
\]
Optimization problem for fully-connected networks

Operations Between Two Layers V

\[n : \text{total} \; \# \; \text{variables} = (n_1 + 1)n_2 + \cdots + (n_L + 1)n_{L+1} \]

- The \(\text{vec}(\cdot) \) operator stacks columns of a matrix to a vector
We solve the following optimization problem,

$$\min_\theta \ f(\theta), \quad \text{where}$$

$$f(\theta) = \frac{1}{2} \theta^T \theta + C \sum_{i=1}^{l} \xi(z^{L+1,i}(\theta); y^i, x^i).$$

- C: regularization parameter
- $z^{L+1}(\theta) \in \mathbb{R}^{n_{L+1}}$: last-layer output vector of x.
- $\xi(z^{L+1}; y, x)$: loss function. Example:

$$\xi(z^{L+1}; y, x) = \|z^{L+1} - y\|^2$$
The formulation is same as linear classification

However, the loss function is more complicated

Further, it’s non-convex

Note that in the earlier discussion we consider a single instance

In the training process we actually have for $i = 1, \ldots, l$,

$$
s^{m,i} = W^m z^{m,i},
$$

$$
z_j^{m+1,i} = \sigma(s_j^{m,i}), \quad j = 1, \ldots, n_{m+1},
$$

This makes the training more complicated
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Why CNN? I

- There are many types of neural networks
- They are suitable for different types of problems
- While deep learning is hot, it’s not always better than other learning methods
- For example, fully-connected networks were evaluated for general classification data (e.g., data from UCI machine learning repository)
- They are not consistently better than random forests or SVM; see the comparisons (Meyer et al., 2003; Fernández-Delgado et al., 2014; Wang et al., 2018).
Why CNN? II

- We are interested in CNN because it’s shown to be significantly better than others on image data.
- That’s one of the main reasons deep learning becomes popular.
- To study optimization algorithms, of course we want to consider an “established” network.
- That’s why CNN was chosen for our discussion.
- However, the problem is that operations in CNN are more complicated than fully-connected networks.
- Most books/papers only give explanation without detailed mathematical forms.
To study the optimization, we need some clean formulations

So let’s give it a try here
Consider a K-class classification problem with training data

$$(y^i, Z_1^i), \quad i = 1, \ldots, l.$$

y^i: label vector \hspace{1cm} Z_1^i$: input image

If Z_1^i is in class k, then

$$y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K.$$

$\underbrace{0, \ldots, 0, 1, 0, \ldots, 0}_{k-1}$

CNN maps each image Z_1^i to y^i
Typically, CNN consists of multiple convolutional layers followed by fully-connected layers.

Input and output of a convolutional layer are assumed to be images.
Convolutional Layers I

- For the current layer, let the input be an image $Z^{\text{in}}: a^{\text{in}} \times b^{\text{in}} \times d^{\text{in}}$.

 a^{in}: height, b^{in}: width, and d^{in}: #channels.
Convolutional Layers II

The goal is to generate an output image $Z_{\text{out},i}$ of d_{out} channels of $a_{\text{out}} \times b_{\text{out}}$ images.
- Consider d_{out} filters.
- Filter $j \in \{1, \ldots, d_{\text{out}}\}$ has dimensions $h \times h \times d_{\text{in}}$.

$$
\begin{bmatrix}
 w_{1,1,1}^j & w_{1,h,1}^j \\
 \vdots & \vdots \\
 w_{h,1,1}^j & w_{h,h,1}^j \\
\end{bmatrix}
\quad \ldots \quad
\begin{bmatrix}
 w_{1,1,d_{\text{in}}}^j & w_{1,h,d_{\text{in}}}^j \\
 \vdots & \vdots \\
 w_{h,1,d_{\text{in}}}^j & w_{h,h,d_{\text{in}}}^j \\
\end{bmatrix}
$$

Chih-Jen Lin (National Taiwan Univ.)
Optimization problem for convolutional neural networks (CNN)

Convolutional Layers III

h: filter height/width (layer index omitted)

To compute the jth channel of output, we scan the input from top-left to bottom-right to obtain the sub-images of size $h \times h \times d^{in}$
We then calculate the inner product between each sub-image and the jth filter.

For example, if we start from the upper left corner of the input image, the first sub-image of channel d is

$$
\begin{bmatrix}
Z^i_{1,1,d} & \cdots & Z^i_{1,h,d} \\
\vdots & \ddots & \vdots \\
Z^i_{h,1,d} & \cdots & Z^i_{h,h,d}
\end{bmatrix}.
$$
We then calculate

$$\sum_{d=1}^{d^{in}} \left\langle \begin{bmatrix} z_{1,1,d}^i & \cdots & z_{1,h,d}^i \\ \vdots & \ddots & \vdots \\ z_{h,1,d}^i & \cdots & z_{h,h,d}^i \end{bmatrix}, \begin{bmatrix} w_{1,1,d}^j & \cdots & w_{1,h,d}^j \\ \vdots & \ddots & \vdots \\ w_{h,1,d}^j & \cdots & w_{h,h,d}^j \end{bmatrix} \right\rangle + b_j,$$

where $\langle \cdot, \cdot \rangle$ means the sum of component-wise products between two matrices.

- This value becomes the $(1, 1)$ position of the channel j of the output image.
Next, we use other sub-images to produce values in other positions of the output image.

Let the stride \(s \) be the number of pixels vertically or horizontally to get sub-images.

For the \((2, 1)\) position of the output image, we move down \(s \) pixels vertically to obtain the following sub-image:

\[
\begin{bmatrix}
 z_{1+s,1,d}^i & \cdots & z_{1+s,h,d}^i \\
 \vdots & \ddots & \vdots \\
 z_{h+s,1,d}^i & \cdots & z_{h+s,h,d}^i
\end{bmatrix}.
\]
The \((2, 1)\) position of the channel \(j\) of the output image is

\[
\sum_{d=1}^{d^{in}} \left\langle \begin{bmatrix}
Z_{1+s,1,d}^i & \cdots & Z_{1+s,h,d}^i \\
\vdots & \ddots & \vdots \\
Z_{h+s,1,d}^i & \cdots & Z_{h+s,h,d}^i
\end{bmatrix}, \begin{bmatrix}
w_{1,1,d}^j & \cdots & w_{1,h,d}^j \\
\vdots & \ddots & \vdots \\
w_{h,1,d}^j & \cdots & w_{h,h,d}^j
\end{bmatrix} \right\rangle + b_j
\]

(4)
The output image size a^{out} and b^{out} are respectively numbers that vertically and horizontally we can move the filter

\[
a^{\text{out}} = \left\lfloor \frac{a^{\text{in}} - h}{s} \right\rfloor + 1, \quad b^{\text{out}} = \left\lfloor \frac{b^{\text{in}} - h}{s} \right\rfloor + 1
\]

Rationale of (5): vertically last row of each sub-image is

\[
h, h + s, \ldots, h + \Delta s \leq a^{\text{in}}
\]
Thus

\[\Delta = \left\lfloor \frac{a^n - h}{s} \right\rfloor \]
For efficient implementations, we should conduct convolutional operations by matrix-matrix and matrix-vector operations. We will go back to this issue later.
Let’s collect images of all channels as the input:

\[Z^{in,i} = \begin{bmatrix}
 z_{1,1,1}^i & z_{2,1,1}^i & \cdots & z_{a^{in},b^{in},1}^i \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{1,1,d^{in}}^i & z_{2,1,d^{in}}^i & \cdots & z_{a^{in},b^{in},d^{in}}^i
\end{bmatrix} \in \mathbb{R}^{d^{in} \times a^{in} \times b^{in}}. \]
Let all filters

\[
W = \begin{bmatrix}
w_{1,1,1} & w_{2,1,1} & \cdots & w_{h,h,d^{\text{in}}} \\
\vdots & \vdots & \ddots & \vdots \\
w_{1,1,1}^{d^{\text{out}}} & w_{2,1,1}^{d^{\text{out}}} & \cdots & w_{h,h,d^{\text{in}}}^{d^{\text{out}}}
\end{bmatrix}
\in \mathbb{R}^{d^{\text{out}} \times hh d^{\text{in}}}
\]

be variables (parameters) of the current layer
Usually a bias term is considered

\[b = \begin{bmatrix} b_1 \\ \vdots \\ b_{d_{out}} \end{bmatrix} \in \mathbb{R}^{d_{out} \times 1} \]

Operations at a layer

\[S_{out,i} = W \phi(Z_{in,i}) + b_{1}^{T} a_{out} b_{out} \]

\[\in \mathbb{R}^{d_{out} \times a_{out} b_{out}} \]

(6)
where

\[
\mathbf{1}_{a_{\text{out}}b_{\text{out}}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^{a_{\text{out}}b_{\text{out}} \times 1}.
\]

• \(\phi(Z^{\text{in},i}) \) collects all sub-images in \(Z^{\text{in},i} \) into a matrix.
Specifically,

\[
\phi(Z_{\text{in},i}) = \begin{bmatrix}
Z_{1,1,1}^i & Z_{1+s,1,1}^i \\
Z_{2,1,1}^i & Z_{2+s,1,1}^i \\
\vdots & \vdots & \ddots \\
Z_{h,h,1}^i & Z_{h+s,h,1}^i \\
\vdots & \vdots \\
Z_{h,h,d_{\text{in}}}^i & Z_{h+s,h,d_{\text{in}}}^i \\
\end{bmatrix}
\in \mathbb{R}^{hhd_{\text{in}} \times a_{\text{out}}b_{\text{out}}}
\]
Next, an activation function scales each element of $S^{\text{out},i}$ to obtain the output matrix $Z^{\text{out},i}$.

$$Z^{\text{out},i} = \sigma(S^{\text{out},i}) \in R^{d_{\text{out}} \times a_{\text{out}} b_{\text{out}}}.$$ \hspace{1cm} (7)

For CNN, commonly the following RELU activation function

$$\sigma(x) = \max(x, 0)$$ \hspace{1cm} (8)

is used.

Later we need that $\sigma(x)$ is differentiable, but the RELU function is not.
Past works such as Krizhevsky et al. (2012) assume

\[\sigma'(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{otherwise}
\end{cases} \]
The Function $\phi(Z^{in,i})$

- In the matrix-matrix product
 \[
 W\phi(Z^{in,i}),
 \]
 each element is the \textit{inner product} between a filter and a sub-image.
- We need to represent $\phi(Z^{in,i})$ in an \textit{explicit} form.
- This is important for subsequent calculation.
- Clearly ϕ is a \textit{linear mapping}, so there exists a 0/1 matrix P_{ϕ} such that
 \[
 \phi(Z^{in,i}) \equiv \text{mat} \left(P_{\phi} \text{vec}(Z^{in,i}) \right)_{hhd^{in}a^{out}b^{out}}, \forall i, \quad (9)
 \]
The Function $\phi(Z^{in,i})$ II

- **vec(M):** all M's columns concatenated to a vector \mathbf{v}

$$\text{vec}(M) = \begin{bmatrix} M_{:,1} \\ \vdots \\ M_{:,b} \end{bmatrix} \in \mathbb{R}^{ab \times 1}, \text{ where } M \in \mathbb{R}^{a \times b}$$

- **mat(\mathbf{v}) is the inverse of vec(M)**

$$\text{mat}(\mathbf{v})_{a \times b} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_{(b-1)a+1} \\ \vdots & \vdots \\ \mathbf{v}_a & \mathbf{v}_{ba} \end{bmatrix} \in \mathbb{R}^{a \times b}, \quad (10)$$
The Function $\phi(Z^{in,i})$

where

$$v \in \mathbb{R}^{ab \times 1}.$$

- P_{ϕ} is a huge matrix:

$$P_{\phi} \in \mathbb{R}^{hhd^{in}a^{out}b^{out} \times d^{in}a^{in}b^{in}}$$

and

$$\phi : \mathbb{R}^{d^{in} \times a^{in}b^{in}} \rightarrow \mathbb{R}^{hhd^{in} \times a^{out}b^{out}}$$

- Later we will check implementation details

- Past works using the form (9) include, for example, Vedaldi and Lenc (2015)
Optimization Problem I

- We collect all weights to a vector variable θ.

$$\theta = \begin{bmatrix}
 \text{vec}(W^1) \\
 b^1 \\
 \vdots \\
 \text{vec}(W^L) \\
 b^L
\end{bmatrix} \in \mathbb{R}^n, \quad n: \text{total \#\ variables}$$

- The output of the last layer L is a vector $z^{L+1,i}(\theta)$.

- Consider any loss function such as the squared loss

$$\xi_i(\theta) = \left\| z^{L+1,i}(\theta) - y^i \right\|^2.$$
The optimization problem is

$$\min_{\theta} f(\theta),$$

where

$$f(\theta) = \frac{1}{2C} \theta^T \theta + \frac{1}{l} \sum_{i=1}^{l} \xi(z^{L+1,i}(\theta); y^i, Z^{1,i})$$

C: regularization parameter.

The formulation is almost the same as that for fully connected networks.
Optimization Problem III

- Note that we divide the sum of training losses by the number of training data.
 Thus the second term becomes the average training loss.
- With the optimization problem, there is still a long way to do a real implementation.
- Further, CNN involves additional operations in practice:
 - padding
 - pooling
- We will explain them.
Zero Padding I

- To better control the size of the output image, before the convolutional operation we may enlarge the input image to have zero values around the border.
- This technique is called zero-padding in CNN training.
- An illustration:
Zero Padding II

An input image

$$p \begin{cases} 0 \cdots 0 \\ \vdots \\ 0 \cdots 0 \end{cases} \begin{cases} a^{in} \\ \vdots \end{cases} \begin{cases} b^{in} \\ \vdots \end{cases}$$
The size of the new image is changed from

\[a^{\text{in}} \times b^{\text{in}} \] to \[(a^{\text{in}} + 2p) \times (b^{\text{in}} + 2p),\]

where \(p \) is specified by users.

The operation can be treated as a layer of mapping an input \(Z^{\text{in},i} \) to an output \(Z^{\text{out},i} \).

Let

\[d^{\text{out}} = d^{\text{in}}. \]
There exists a 0/1 matrix

\[P_{pad} \in \mathbb{R}^{d_{out} a_{out} b_{out} \times d_{in} a_{in} b_{in}} \]

so that the padding operation can be represented by

\[Z_{out,i} \equiv \text{mat}(P_{pad} \text{vec}(Z_{in,i}))_{d_{out} \times a_{out} b_{out}}. \quad (11) \]

Implementation details will be discussed later
Pooling I

- To reduce the computational cost, a dimension reduction is often applied by a pooling step after convolutional operations.
- Usually we consider an operation that can (approximately) extract rotational or translational invariance features.
- Examples: average pooling, max pooling, and stochastic pooling,
- Let’s consider max pooling as an illustration
Pooling II

- An example:

 \[
 \begin{bmatrix}
 2 & 3 & 6 & 8 \\
 5 & 4 & 9 & 7 \\
 1 & 2 & 6 & 0 \\
 4 & 3 & 2 & 1 \\
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 5 & 9 \\
 4 & 6 \\
 \end{bmatrix}
 \]

 \[
 \begin{bmatrix}
 3 & 2 & 3 & 6 \\
 4 & 5 & 4 & 9 \\
 2 & 1 & 2 & 6 \\
 3 & 4 & 3 & 2 \\
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 5 & 9 \\
 4 & 6 \\
 \end{bmatrix}
 \]
Pooling III

- B is derived by shifting A by 1 pixel in the horizontal direction.
- We split two images into four 2×2 sub-images and choose the max value from every sub-image.
- In each sub-image because only some elements are changed, the maximal value is likely the same or similar.
- This is called translational invariance
- For our example the two output images from A and B are the same.
Pooling IV

- For mathematical representation, we consider the operation as a layer of mapping an input $Z_{in,i}$ to an output $Z_{out,i}$.
- In practice pooling is considered as an operation at the end of the convolutional layer.
- We partition every channel of $Z_{in,i}$ into non-overlapping sub-regions by $h \times h$ filters with the stride $s = h$.
- Because of the disjoint sub-regions, the stride s for sliding the filters is equal to h.
Pooling V

- This partition step is a special case of how we generate sub-images in convolutional operations.
- By the same definition as (9) we can generate the matrix

$$\phi(Z^{in,i}) = \text{mat}(P_\phi \text{vec}(Z^{in,i}))_{hh \times d^{out} a^{out} b^{out}},$$

where

$$a^{out} = \left[\frac{a^{in}}{h} \right], \quad b^{out} = \left[\frac{b^{in}}{h} \right], \quad d^{out} = d^{in}.$$
Pooling VI

- This is the same from the calculation in (5) as

\[
\left\lfloor \frac{a^{\text{in}} - h}{h} \right\rfloor + 1 = \left\lfloor \frac{a^{\text{in}}}{h} \right\rfloor
\]

- Note that here we consider

\[hh \times d^{\text{out}} a^{\text{out}} b^{\text{out}}\]

rather than \[hhd^{\text{out}} \times a^{\text{out}} b^{\text{out}}\]

because we can then do a max operation on each column
To select the largest element of each sub-region, there exists a 0/1 matrix

\[M^i \in \mathbb{R}^{d_{\text{out}} a_{\text{out}} b_{\text{out}} \times hhd_{\text{out}} a_{\text{out}} b_{\text{out}}} \]

so that each row of \(M^i \) selects a single element from \(\text{vec}(\phi(Z_{\text{in},i})) \).

Therefore,

\[Z_{\text{out},i} = \text{mat} \left(M^i \text{vec}(\phi(Z_{\text{in},i})) \right)_{d_{\text{out}} \times a_{\text{out}} b_{\text{out}}}. \quad (14) \]
A comparison with (6) shows that M^i is in a similar role to the weight matrix W.

While M^i is 0/1, it is not a constant. Its positions of 1's depend on the values of $\phi(Z^{in,i})$.

By combining (12) and (14), we have

$$Z^{out,i} = \text{mat} \left(P_{\text{pool}}^i \text{vec}(Z^{in,i}) \right)_{d^{out} \times a^{out} b^{out}},$$

where

$$P_{\text{pool}}^i = M^i P_\phi \in \mathbb{R}^{d^{out} a^{out} b^{out} \times d^{in} a^{in} b^{in}}.$$
Summary of a Convolutional Layer I

- For implementation, padding and pooling are (optional) part of the convolutional layers.
- We discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

\[Z^{m,i} \rightarrow \text{padding by (11)} \rightarrow \text{convolutional operations by (6), (7)} \rightarrow \text{pooling by (15)} \rightarrow Z^{m+1,i} \]

(17)
Summary of a Convolutional Layer II

where $Z_{m,i}^m$ and $Z_{m+1,i}^{m+1}$ are input and output of the mth layer, respectively.

- Let the following symbols denote image sizes at different stages of the convolutional layer.

\[
\begin{align*}
 a^m, b^m & : \text{ size in the beginning} \\
 a_{\text{pad}}^m, b_{\text{pad}}^m & : \text{ size after padding} \\
 a_{\text{conv}}^m, b_{\text{conv}}^m & : \text{ size after convolution.}
\end{align*}
\]

- The following table indicates how these values are $a^{\text{in}}, b^{\text{in}}, d^{\text{in}}$ and $a^{\text{out}}, b^{\text{out}}, d^{\text{out}}$ at different stages.
Summary of a Convolutional Layer III

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>$Z^{m,i}$</td>
<td>pad($Z^{m,i}$)</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>pad($Z^{m,i}$)</td>
<td>$S^{m,i}$</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>$S^{m,i}$</td>
<td>$\sigma(S^{m,i})$</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>$\sigma(S^{m,i})$</td>
<td>$Z^{m+1,i}$</td>
</tr>
</tbody>
</table>

Operation Details

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>a^{in}, b^{in}, d^{in}</td>
<td>a^{out}, b^{out}, d^{out}</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>a^{m}, b^{m}, d^{m}</td>
<td>a_{pad}^{m}, b_{pad}^{m}, d^{m}</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>a_{conv}^{m}, b_{conv}^{m}, d^{m+1}</td>
<td>a_{conv}^{m}, b_{conv}^{m}, d^{m+1}</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>a_{conv}^{m}, b_{conv}^{m}, d^{m+1}</td>
<td>a^{m+1}, b^{m+1}, d^{m+1}</td>
</tr>
</tbody>
</table>
Summary of a Convolutional Layer IV

- Let the filter size, mapping matrices and weight matrices at the mth layer be

$$h^m, P^m_{\text{pad}}, P^m_{\phi}, P^m_{\text{pool}}, W^m, b^m.$$

- From (11), (6), (7), (15), all operations can be summarized as

$$S^{m,i} = W^m \text{mat}(P^m_{\phi} P^m_{\text{pad}} \text{vec}(Z^{m,i})) h^m h^m d^m \times a^m_{\text{conv}} b^m_{\text{conv}} + b^m 1^T_{d^m}$$

$$Z^{m+1,i} = \text{mat}(P^m_{\text{pool}} \text{vec}(\sigma(S^{m,i}))) d^{m+1} \times a^{m+1} b^{m+1},$$

(18)
Assume L^C is the number of convolutional layers

Input vector of the first fully-connected layer:

$$z^{m,i} = \text{vec}(Z^{m,i}) \quad i = 1, \ldots, l, \quad m = L^c + 1.$$

In each of the fully-connected layers ($L^c < m \leq L$), we consider weight matrix and bias vector between layers m and $m + 1$.
Fully-Connected Layer II

- **Weight matrix:**

\[
W^m = \begin{bmatrix}
 w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
 w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{n_{m+1}1}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m
\end{bmatrix}_{n_{m+1} \times n_m} \tag{19}
\]

- **Bias vector**

\[
b^m = \begin{bmatrix}
 b_{1}^m \\
 b_{2}^m \\
 \vdots \\
 b_{n_{m+1}}^m
\end{bmatrix}_{n_{m+1} \times 1}
\]
Here n_m and n_{m+1} are the numbers of nodes in layers m and $m + 1$, respectively.

If $z_{m,i} \in R^{n_m}$ is the input vector, the following operations are applied to generate the output vector $z_{m+1,i} \in R^{n_{m+1}}$.

\begin{align}
 s_{m,i} &= W_m z_{m,i} + b^m, \quad \text{(20)} \\
 z_{j,m+1,i} &= \sigma(s_{j,m,i}), \quad j = 1, \ldots, n_{m+1}. \quad \text{(21)}
\end{align}
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima.
- It’s known that global optimization is much more difficult than local minimization.
- The problem structure is very complicated.
- In this course we will have first-hand experiences on handling these difficulties.
Formulation I

- We have written all CNN operations in matrix/vector forms.
- This is useful in deriving the gradient.
- Are our representation symbols good enough? Can we do better?
- You can say that this is only a matter of notation, but given the wide use of CNN, a good formulation can be extremely useful.

