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Introduction

Optimization Methods Other than
Stochastic Gradient

We have explained why stochastic gradient is
popular for deep learning

The same reasons may explain why other methods
are not suitable for deep learning

But we also notice that from the simplest SG to
what people are using many modifications were
made

Can we extend other optimization methods to be
suitable for deep learning?
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Newton method

Newton Method

Consider an optimization problem

min
θ

f (θ)

Newton method solves the 2nd-order approximation
to get a direction d

min
d

∇f (θ)Td +
1

2
dT∇2f (θ)d (1)

If f (θ) isn’t strictly convex, (1) may not have a
unique solution
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Newton method

Newton Method (Cont’d)

We may use a positive-definite G to approximate
∇2f (θ).

Then (1) can be solved by

Gd = −∇f (θ)

The resulting direction is a descent one

∇f (θ)Td = −∇f (θ)TG−1∇f (θ) < 0
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Newton method

Newton Method (Cont’d)

The procedure:

while stopping condition not satisfied do
Let G be ∇2f (θ) or its approximation
Exactly or approximately solve

Gd = −∇f (θ)

Find a suitable step size α
Update

θ ← θ + αd .

end while
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Newton method

Step Size I

Selection of the step size α: usually two types of
approaches

Line search
Trust region (or its predecessor:
Levenberg-Marquardt algorithm)

If using line search, details are similar to what we
had for gradient descent

We gradually reduce α such that

f (θ + αd) < f (θ) + ν∇f (θ)T (αd)
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Newton method

Newton versus Gradient Descent I

We know they use second-order and first-order
information respectively

What are their special properties?

It is known that using higher order information leads
to faster final local convergence
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Newton method

Newton versus Gradient Descent II

An illustration (modified from Tsai et al. (2014))
presented earlier
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Newton method

Newton versus Gradient Descent III

But the question is for machine learning why we
need fast local convergence?

The answer is no

However, higher-order methods tend to be more
robust

Their behavior may be more consistent across easy
and difficult problems

It’s known that stochastic gradient is sometimes
sensitive to parameters

Thus what we hope to try here is if we can have a
more robust optimization method
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Newton method

Difficulties of Newton for NN I

The Newton linear system

Gd = −∇f (θ) (2)

can be large.
G ∈ Rn×n,

where n is the total number of variables

Thus G is often too large to be stored
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Newton method

Difficulties of Newton for NN II

Evan if we can store G , calculating

d = −G−1∇f (θ)

is usually very expensive

Thus a direct use of Newton for deep learning is
hopeless
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Newton method

Existing Works Trying to Make Newton
Practical I

Many works tried to address this issue

Their approaches significantly vary

I roughly categorize them to two groups

Hessian-free (Martens, 2010; Martens and
Sutskever, 2012; Wang et al., 2020; Henriques
et al., 2018)
Hessian approximation (Martens and Grosse,
2015; Botev et al., 2017; Zhang et al., 2017)
In particular, diagonal approximation
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Newton method

Existing Works Trying to Make Newton
Practical II

There are many others where I didn’t put into the
above two groups for various reasons (Osawa et al.,
2019; Wang et al., 2018; Chen et al., 2019;
Wilamowski et al., 2007)

There are also comparisons (Chen and Hsieh, 2018)

With the many possibilities it is difficult to reach
conclusions

We decide to first check the robustness of standard
Newton methods on small-scale data
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Newton method

Existing Works Trying to Make Newton
Practical III

Thus in our discussion we try not to do
approximations
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Hessian and Gaussian-Newton Matrices

Introduction

We will check techniques to address the difficulty of
storing or inverting the Hessian

But before that let’s derive the mathematical form
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Hessian and Gaussian-Newton Matrices

Hessian Matrix I

For CNN, the gradient of f (θ) is

∇f (θ) =
1

C
θ +

1

l

l∑
i=1

(J i)T∇zL+1,iξ(zL+1,i ; y i ,Z 1,i),

(3)
where

J i =


∂zL+1,i

1

∂θ1
· · · ∂zL+1,i

1

∂θn...
...

...
∂zL+1,i

nL+1

∂θ1
· · ·

∂zL+1,i
nL+1

∂θn


nL+1×n

, i = 1, . . . , l , (4)
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Hessian and Gaussian-Newton Matrices

Hessian Matrix II

is the Jacobian of zL+1,i(θ).

The Hessian matrix of f (θ) is

∇2f (θ) =
1

C
I +

1

l

l∑
i=1

(J i)TB iJ i

+
1

l

l∑
i=1

nL∑
j=1

∂ξ(zL+1,i ; y i ,Z 1,i)

∂zL+1,i
j


∂2zL+1,i

j

∂θ1∂θ1
· · · ∂2zL+1,i

j

∂θ1∂θn... . . . ...
∂2zL+1,i

j

∂θn∂θ1
· · · ∂2zL+1,i

j

∂θn∂θn

 ,
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Hessian and Gaussian-Newton Matrices

Hessian Matrix III

where I is the identity matrix and B i is the Hessian
of ξ(·) with respect to zL+1,i :

B i = ∇2
zL+1,i ,zL+1,iξ(zL+1,i ; y i ,Z 1,i)

More precisely,

B i
ts =

∂2ξ(zL+1,i ; y i ,Z 1,i)

∂zL+1,i
t ∂zL+1,i

s

,∀t, s = 1, . . . , nL+1. (5)

Usually B i is very simple.
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Hessian and Gaussian-Newton Matrices

Hessian Matrix IV

For example, if the squared loss is used,

ξ(zL+1,i ; y i) = ||zL+1,i − y i ||2.

then

B i =

2
. . .

2


Usually we consider a convex loss function

ξ(zL+1,i ; y i)

with respect to zL+1,i
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Hessian and Gaussian-Newton Matrices

Hessian Matrix V

Thus B i is positive semi-definite

The last term of ∇2f (θ) may not be positive
semi-definite

Note that for a twice differentiable function f (θ)

f (θ) is convex

if and only if

∇2f (θ) is positive semi-definite
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Hessian and Gaussian-Newton Matrices

Jacobian Matrix

The Jacobian matrix of zL+1,i(θ) ∈ RnL+1 is

J i =


∂zL+1,i

1

∂θ1
· · · ∂zL+1,i

1

∂θn...
...

...
∂zL+1,i

nL

∂θ1
· · · ∂zL+1,i

nL

∂θn

 ∈ RnL+1×n, i = 1, . . . l .

nL+1: # of neurons in the output layer

n: number of total variables

nL+1 × n can be large
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Hessian and Gaussian-Newton Matrices

Gauss-Newton Matrix I

The Hessian matrix ∇2f (θ) is now not positive
definite.

We may need a positive definite approximation

This is a deep research issue

Many existing Newton methods for NN has
considered the Gauss-Newton matrix (Schraudolph,
2002)

G =
1

C
I +

1

l

l∑
i=1

(J i)TB iJ i

by removing the last term in ∇2f (θ)
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Hessian and Gaussian-Newton Matrices

Gauss-Newton Matrix II

The Gauss-Newton matrix is positive definite if B i is
positive semi-definite

This can be achieved if we use a convex loss
function in terms of zL+1,i(θ)

We then solve

Gd = −∇f (θ)
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