
Newton Methods for Neural Networks:
Algorithm

Chih-Jen Lin
National Taiwan University

Last updated: May 25, 2020

Chih-Jen Lin (National Taiwan Univ.) 1 / 35

Outline

1 Hessian-free optimization

2 Subsampled Hessian Newton method

3 Other consideration

Chih-Jen Lin (National Taiwan Univ.) 2 / 35

Hessian-free optimization

Outline

1 Hessian-free optimization

2 Subsampled Hessian Newton method

3 Other consideration

Chih-Jen Lin (National Taiwan Univ.) 3 / 35

Hessian-free optimization

Hessian-free Newton Method I

Recall that at each Newton iteration we must solve
a linear system

Gd = −∇f (θ)

and G is huge

G ’s size is
n × n,

where n is the total number of variables

It is not possible to store G

Chih-Jen Lin (National Taiwan Univ.) 4 / 35

Hessian-free optimization

Hessian-free Newton Method II

Thus methods such as Gaussian elimination are not
possible

If G has certain structures, it’s possible to use
iterative methods to solve the linear system by a
sequence of matrix-vector products

Gv 1,Gv 2, . . .

without storing G

This is called Hessian-free in optimization

Chih-Jen Lin (National Taiwan Univ.) 5 / 35

Hessian-free optimization

Hessian-free Newton Method III

For example, conjugate gradient (CG) method can
be used to solve

Gd = −∇f (θ)

by a sequence of matrix-vector products (Hestenes
and Stiefel, 1952)

We don’t discuss details of CG here though the
procedure will be shown in a later slide

You can check Golub and Van Loan (2012) for a
good introduction

Chih-Jen Lin (National Taiwan Univ.) 6 / 35

Hessian-free optimization

Hessian-free Newton Method IV

For many machine learning methods, G has certain
structures

The cost of Hessian-free Newton is

(#matrix-vector products +

function/gradient evaluation)×#iterations

Usually the number of iterations is small

At each iteration, to solve the linear system, several
matrix-vector products are needed

In theory, the number of CG steps (matrix-vector
products) is ≤ the number of variables

Chih-Jen Lin (National Taiwan Univ.) 7 / 35

Hessian-free optimization

Hessian-free Newton Method V

Each can be as expensive as one function/gradient
evaluation

Thus, matrix-vector products can be the bottleneck

Chih-Jen Lin (National Taiwan Univ.) 8 / 35

Hessian-free optimization

Conjugate Gradient Method I

We would like to solve

Ax = b,

where A is symmetric positive definite

The procedure

k = 0; x = 0; r = b; ρ0 = ‖r‖22
while

√
ρk > ε‖b‖2 and k < kmax

k = k + 1
if k = 1

p = r

Chih-Jen Lin (National Taiwan Univ.) 9 / 35

Hessian-free optimization

Conjugate Gradient Method II

else
β = ρk−1/ρk−2
p = r + βp

end
w = Ap
α = ρk−1/p

Tw
x = x + αp
r = r − αw
ρk = ‖r‖22

end

Chih-Jen Lin (National Taiwan Univ.) 10 / 35

Hessian-free optimization

Matrix-vector Products I

Earlier we have shown that the Gauss-Newton
matrix is

G =
1

C
I +

1

l

l∑
i=1

(J i)TB iJ i

We have

Gv =
1

C
v +

1

l

l∑
i=1

(
(J i)T

(
B i(J iv)

))
. (1)

Chih-Jen Lin (National Taiwan Univ.) 11 / 35

Hessian-free optimization

Matrix-vector Products II

If we can calculate

J iv and (J i)T (·)

then G is never explicitly stored

Therefore, we can apply the conjugate gradient
(CG) method by a sequence of matrix-vector
products.

But is this approach really feasible?

We show that memory can be an issue

Chih-Jen Lin (National Taiwan Univ.) 12 / 35

Hessian-free optimization

Memory Cost of Storing J i I

The Gauss-Newton matrix is

G =
1

C
I +

1

`

∑̀
i=1

(J i)TB iJ i

Its size is
n × n,

where n is the total number of variables

Chih-Jen Lin (National Taiwan Univ.) 13 / 35

Hessian-free optimization

Memory Cost of Storing J i II

But storing J i needs

nL+1 × n × l ,

where

nL+1 : # nodes in the output layer (# classes)

l : number of data

If
n < nL+1 × l ,

then storing J i ,∀i needs more spaces than G
Chih-Jen Lin (National Taiwan Univ.) 14 / 35

Hessian-free optimization

Memory Cost of Storing J i III

Then the Hessian-free method cannot work

A related question is why in calculating the gradient
we didn’t get J i and calculate

∇f (θ)

=
1

C
θ +

1

l

l∑
i=1

(J i)T∇
z
L+1,iξ(zL+1,i ; y i ,Z 1,i)

Instead we use backpropagation without explicitly
storing J i ,∀i
For gradient, J i is used only once

Chih-Jen Lin (National Taiwan Univ.) 15 / 35

Hessian-free optimization

Memory Cost of Storing J i IV

However, in each Newton iteration we need J i

several times

J i is used in every matrix-vector product

Some techniques can be used to alleviate the
memory problem of storing J i ,∀i

Subsampled Hessian Newton method
Forward and reverse modes of automatic
differentiation

Chih-Jen Lin (National Taiwan Univ.) 16 / 35

Subsampled Hessian Newton method

Outline

1 Hessian-free optimization

2 Subsampled Hessian Newton method

3 Other consideration

Chih-Jen Lin (National Taiwan Univ.) 17 / 35

Subsampled Hessian Newton method

Subsampled Hessian Newton Method I

We know the gradient needs a sum over all data

∇f (θ) =
1

C
θ +

1

l

l∑
i=1

∇θξi

In stochastic gradient, we do mini-batch

Like mini-batch, in Newton we can use a subset of
data for

matrix-vector products

and

function/gradient evaluation
Chih-Jen Lin (National Taiwan Univ.) 18 / 35

Subsampled Hessian Newton method

Subsampled Hessian Newton Method II

This is possible: subsampled Newton method (Byrd
et al., 2011; Martens, 2010; Wang et al., 2015)

Assume the large number of data points are from
the same distribution

We can select a subset S ⊂ {1, . . . , l} and have

G S =
1

C
I +

1

|S |
∑
i∈S

(J i)TB iJ i ≈ G .

Chih-Jen Lin (National Taiwan Univ.) 19 / 35

Subsampled Hessian Newton method

Subsampled Hessian Newton Method III

Then the matrix-vector product becomes

G Sv =
1

C
v +

1

|S |
∑
i∈S

(
(J i)T

(
B i(J iv)

))
(2)

The cost of storing J i is reduced from

nL+1 × n × l

to
nL+1 × n × |S |

Chih-Jen Lin (National Taiwan Univ.) 20 / 35

Subsampled Hessian Newton method

Subsampled Hessian Newton Method IV

Typically a choice may be

|S | = (0.05 or 0.01)× l

The selection of the size |S | is still an issue worth
investigation

At this moment we consider

subset for matrix-vector products

and

full set for function/gradient evaluation

Reason: no matter what a subset S is chosen,

Chih-Jen Lin (National Taiwan Univ.) 21 / 35

Subsampled Hessian Newton method

Subsampled Hessian Newton Method V

G S is still positive definite

Then
G Sd = −∇f (θ)

leads to

∇f (θ)Td = −∇f (θ)T (G S)−1∇f (θ) < 0

If we use a subset for the gradient, then the above
inequality may not hold

Then the situation becomes more complicated

Chih-Jen Lin (National Taiwan Univ.) 22 / 35

Subsampled Hessian Newton method

Subsampled Hessian Newton Method VI

Note that if using the full set for function/gradient
evaluations, we have theoretical asymptotic
convergence to a stationary point (Byrd et al., 2011)

Chih-Jen Lin (National Taiwan Univ.) 23 / 35

Other consideration

Outline

1 Hessian-free optimization

2 Subsampled Hessian Newton method

3 Other consideration

Chih-Jen Lin (National Taiwan Univ.) 24 / 35

Other consideration

Levenberg-Marquardt method I

Besides backtracking line search, in optimization
another way to adjust the direction is the
Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963)

It modifies the linear system to

(G S + λI)d = −∇f (θ)

The value λ is decided by how good the function
reduction is.

It’s updated by the following settings.

Chih-Jen Lin (National Taiwan Univ.) 25 / 35

Other consideration

Levenberg-Marquardt method II

If θ + d is the next iterate after line search, we
define

ρ =
f (θ + d)− f (θ)

∇f (θ)Td + 1
2d

TG Sd

as the ratio of

actual function reduction

predicted reduction

Chih-Jen Lin (National Taiwan Univ.) 26 / 35

Other consideration

Levenberg-Marquardt method III

By using ρ, the parameter λnext for the next
iteration is decided by

λnext =

λ× drop ρ > ρupper,

λ ρlower ≤ ρ ≤ ρupper,

λ× boost otherwise,

where
drop < 1, boost > 1

are given constants.

In our code you can see

Chih-Jen Lin (National Taiwan Univ.) 27 / 35

Other consideration

Levenberg-Marquardt method IV

param.drop = 2/3;

param.boost = 3/2;

and
ρupper = 0.75, ρlower = 0.25

If the function-value reduction is not satisfactory, λ
is enlarged and the resulting direction is closer to
the negative gradient.

In optimization practice, if backtracking line search
has been applied, usually there is no need to apply
this LM method

Chih-Jen Lin (National Taiwan Univ.) 28 / 35

Other consideration

Levenberg-Marquardt method V

However, some past works (e.g., Martens, 2010;
Wang et al., 2018) on fully-connected networks
seem to show that applying both is useful

The use of LM in training NN is still an issue to be
investigated

Chih-Jen Lin (National Taiwan Univ.) 29 / 35

Other consideration

Function and Gradient Evaluation I

Recall in gradient evaluation the following main
steps are conducted:

∆← mat(vec(∆)TPm,i
pool)

∂ξi
∂Wm

= ∆ · φ(pad(Zm,i))T

∆← vec
(
(Wm)T∆

)T
Pm
φ P

m
pad

∆← ∆� I [Zm,i]

Chih-Jen Lin (National Taiwan Univ.) 30 / 35

Other consideration

Function and Gradient Evaluation II

Clearly we must store Zi , or even φ(pad(Zm,i),∀i
after the forward process.

This is fine for stochastic gradient as we use a small
batch of data

However, for Newton we need the full gradient so
we can check the sufficient decrease condition

The memory cost is then

∝ # total data

This is not feasible

Chih-Jen Lin (National Taiwan Univ.) 31 / 35

Other consideration

Function and Gradient Evaluation III

Fortunately we can calculate the gradient by the
sum of sub-gradients

∂f

∂Wm
=

1

C
Wm +

1

l

l∑
i=1

∂ξi
∂Wm

, (3)

∂f

∂bm =
1

C
bm +

1

l

l∑
i=1

∂ξi
∂bm . (4)

Thus we can split the index set {1, . . . , l} of data
to, for example, R equal-sized subsets S1, . . . , SR

Chih-Jen Lin (National Taiwan Univ.) 32 / 35

Other consideration

Function and Gradient Evaluation IV

We sequentially calculate the result corresponding
to each subset and accumulate them for the final
output.

For example, to have Zm,i needed in the backward
process for calculating the gradient, we must store
them after the forward process for function
evaluation.

By using a subset, only Zm,i with i in this subset are
stored, so the memory usage can be dramatically
reduced.

Chih-Jen Lin (National Taiwan Univ.) 33 / 35

Other consideration

The Overall Procedure I

Let’s check the Newton method code at
https://github.com/cjlin1/simpleNN/blob/

master/MATLAB/opt/newton.m

Chih-Jen Lin (National Taiwan Univ.) 34 / 35

https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m
https://github.com/cjlin1/simpleNN/blob/master/MATLAB/opt/newton.m

Other consideration

Discussion I

We have known that at each iteration

G S =
1

C
I +

1

|S |
∑
i∈S

(J i)TB iJ i

is considered
The remaining issues are

How to calculate

J i ,∀i ∈ S

How to calculate

(J i)T
(
B i(J iv)

)
Chih-Jen Lin (National Taiwan Univ.) 35 / 35

	Hessian-free optimization
	Subsampled Hessian Newton method
	Other consideration

