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L Hessidres oprimization |
Hessian-free Newton Method |

@ Recall that at each Newton iteration we must solve
a linear system

Gd = —Vf()

and G is huge
@ G'ssizeis
n xn,
where n is the total number of variables
@ |t is not possible to store G
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Hessian-free Newton Method ||

@ Thus methods such as Gaussian elimination are not
possible

@ If G has certain structures, it's possible to use
iterative methods to solve the linear system by a
sequence of matrix-vector products

Gvl,Gv?, ...

without storing G
@ This is called Hessian-free in optimization
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Hessian-free Newton Method |1

@ For example, conjugate gradient (CG) method can
be used to solve

Gd = —Vf()

by a sequence of matrix-vector products (Hestenes
and Stiefel, 1952)

@ We don't discuss details of CG here though the
procedure will be shown in a later slide

@ You can check Golub and Van Loan (2012) for a
good introduction
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Hessian-free Newton Method IV

@ For many machine learning methods, G has certain
structures

@ The cost of Hessian-free Newton is

(#matrix-vector products —+
function/gradient evaluation) x #iterations

@ Usually the number of iterations is small

@ At each iteration, to solve the linear system, several
matrix-vector products are needed

@ In theory, the number of CG steps (matrix-vector
products) is < the number of variables
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Hessian-free Newton Method V

@ Each can be as expensive as one function/gradient
evaluation

@ Thus, matrix-vector products can be the bottleneck
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Conjugate Gradlent I\/Iethod |

@ We would like to solve
Ax = b,

where A is symmetric positive definite
@ The procedure
k=0;x=0;r=b; po=|r|3
while \/px > €[|b||2 and k < kmax
k=k+1
if k=1

p=r
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Hessian-free o

Conjugate Gradient Method Il

imizatior

else
B = ,0k—1/pk—2
p=r+pp
end
w = Ap
@ = Pk—l/PTW
X=X+ ap
r=r—aw
px = [Irll3

end
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Matrix-vector Products |

@ Earlier we have shown that the Gauss-Newton
matrix is

/
1 1§: NT pi i

i=1

@ We have
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Matrix-vector Products Il

@ If we can calculate
J'v and (J)7 (")

then G is never explicitly stored

@ Therefore, we can apply the conjugate gradient
(CG) method by a sequence of matrix-vector
products.

@ But is this approach really feasible?
@ We show that memory can be an issue

12/35



Memory Cost of Storing J' |

@ The Gauss-Newton matrix is
1 ¢
=—T+>Y (JY'BJ
SRR
@ lts size is

nxn,

where n is the total number of variables
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Memory Cost of Storing J' |l

e But storing J' needs
npy1 X n x|,
where

ni+1 : # nodes in the output layer (# classes)
| : number of data

o If
n<ng x|/,

then storing J', Vi needs more spaces than G
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Memory Cost of Storlng JU

@ Then the Hessian-free method cannot work

@ A related question is why in calculating the gradient
we didn’t get J' and calculate

w(e)

/
%Z JI TVZL 1’ L+1I le)

@ Instead we use backpropagation without explicitly
storing J', Vi
e For gradient, J' is used only once
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Memory Cost of Storing J' IV

@ However, in each Newton iteration we need J'
several times

e J'is used in every matrix-vector product

@ Some techniques can be used to alleviate the
memory problem of storing J', Vi

o Subsampled Hessian Newton method
e Forward and reverse modes of automatic
differentiation
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Subsampled Hessian Newton Method |

@ We know the gradient needs a sum over all data
1 1<
V£(0) C9+ / ;:1 V&

@ In stochastic gradient, we do mini-batch

@ Like mini-batch, in Newton we can use a subset of
data for

matrix-vector products

and

function/gradient evaluation

18/35




Subsampled Hessian Newton Method Il

@ This is possible: subsampled Newton method (Byrd
et al., 2011; Martens, 2010; Wang et al., 2015)

@ Assume the large number of data points are from
the same distribution

@ We can select a subset S C {1,...,/} and have

G° = |S‘Z(J’ B'J ~ G

ieS
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Subsampled Hessian Newton Method Il

@ Then the matrix-vector product becomes

Gy = gur =3 () (BUV) @

ieS

@ The cost of storing J' is reduced from

npy1 X nx|/

to

ngy1 X nx|S|
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Subsampled Hessian Newton Method IV

@ Typically a choice may be
|S| = (0.05 or 0.01) x /

@ The selection of the size |S| is still an issue worth
investigation

@ At this moment we consider
subset for matrix-vector products
and
full set for function/gradient evaluation
@ Reason: no matter what a subset S is chosen,
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Subsampled Hessian Newton Method V

G? is still positive definite
@ Then
G°d = —V£(6)

leads to
VF(0)'d=—-VF(0)(G°)'VF(8) <0

o |f we use a subset for the gradient, then the above
inequality may not hold

@ Then the situation becomes more complicated
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Subsampled Hessian Newton Method VI

@ Note that if using the full set for function/gradient
evaluations, we have theoretical asymptotic
convergence to a stationary point (Byrd et al., 2011)
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Levenberg-Marquardt method |

@ Besides backtracking line search, in optimization
another way to adjust the direction is the
Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963)

@ It modifies the linear system to
(G° + \I)d = —V£(6)

@ The value X is decided by how good the function
reduction is.

@ It's updated by the following settings.
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Levenberg-Marquardt method ||

@ If @ + d is the next iterate after line search, we
define

_ f(0+d)—f(0)
T Vf(0)Td + 1d7G5d

as the ratio of

actual function reduction

predicted reduction
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Levenberg-Marquardt method IlI

@ By using p, the parameter A,y for the next
iteration is decided by

Axdrop  p > pupper;

Anext = § A Plower < P < Pupper;
A X boost otherwise,

where
drop < 1, boost > 1

are given constants.
@ In our code you can see
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Levenberg-Marquardt method IV

param.drop = 2/3;
param.boost = 3/2;

and
Pupper = 0.75, plower = 0.25

o If the function-value reduction is not satisfactory, A
is enlarged and the resulting direction is closer to
the negative gradient.

@ In optimization practice, if backtracking line search

has been applied, usually there is no need to apply

this LM method
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Levenberg-Marquardt method V

@ However, some past works (e.g., Martens, 2010;
Wang et al., 2018) on fully-connected networks
seem to show that applying both is useful

@ The use of LM in training NN is still an issue to be
investigated
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Function and Gradient Evaluation |

@ Recall in gradient evaluation the following main
steps are conducted:

A < mat(vec(A)TP™!)

pool

851' _ mi\\ T
A« vec (W™TA) PrPR,

A+ AGI[Z™]
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Function and Gradient Evaluation |l

e Clearly we must store Z;, or even ¢(pad(Z™'),Vi
after the forward process.

@ This is fine for stochastic gradient as we use a small
batch of data

@ However, for Newton we need the full gradient so
we can check the sufficient decrease condition

@ The memory cost is then
o # total data

@ This is not feasible
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Function and Gradient Evaluation llI

@ Fortunately we can calculate the gradient by the
sum of sub-gradients

of 1 1<~ 0&

own — VT g O
of 1. 1<~ 06
957~ T e (4)

@ Thus we can split the index set {1,...,/} of data
to, for example, R equal-sized subsets Sy, ..., Sk
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Function and Gradient Evaluation 1V

@ We sequentially calculate the result corresponding
to each subset and accumulate them for the final
output.

@ For example, to have Z™ needed in the backward
process for calculating the gradient, we must store
them after the forward process for function
evaluation.

@ By using a subset, only Z™' with i in this subset are
stored, so the memory usage can be dramatically
reduced.
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The Overall Procedure |

@ Let's check the Newton method code at
https://github.com/cjlinl/simpleNN/blob/
master/MATLAB/opt/newton.m
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Discussion |

@ We have known that at each iteration

G® ——I+—Z(J ) B J

|S‘ ieS
is considered
@ The remaining issues are
e How to calculate
JVies

e How to calculate

(J)" (B'(J'v))
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