Newton Methods for Neural Networks:

Algorithm

Chih-Jen Lin

National Taiwan University
Last updated: May 25, 2020

Outline

(1) Hessian-free optimization
(2) Subsampled Hessian Newton method
(3) Other consideration

Outline

(1) Hessian-free optimization

(2) Subsampled Hessian Newton method

3 Other consideration

Hessian-free Newton Method I

- Recall that at each Newton iteration we must solve a linear system

$$
G \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

and G is huge

- G's size is

$$
n \times n
$$

where n is the total number of variables

- It is not possible to store G

Hessian-free Newton Method II

- Thus methods such as Gaussian elimination are not possible
- If G has certain structures, it's possible to use iterative methods to solve the linear system by a sequence of matrix-vector products

$$
G v^{1}, G v^{2}, \ldots
$$

without storing G

- This is called Hessian-free in optimization

Hessian-free Newton Method III

- For example, conjugate gradient (CG) method can be used to solve

$$
G \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

by a sequence of matrix-vector products (Hestenes and Stiefel, 1952)

- We don't discuss details of CG here though the procedure will be shown in a later slide
- You can check Golub and Van Loan (2012) for a good introduction

Hessian-free Newton Method IV

- For many machine learning methods, G has certain structures
- The cost of Hessian-free Newton is
(\#matrix-vector products + function/gradient evaluation) \times \#iterations
- Usually the number of iterations is small
- At each iteration, to solve the linear system, several matrix-vector products are needed
- In theory, the number of CG steps (matrix-vector products) is \leq the number of variables

Hessian-free Newton Method V

- Each can be as expensive as one function/gradient evaluation
- Thus, matrix-vector products can be the bottleneck

Conjugate Gradient Method I

- We would like to solve

$$
A x=b
$$

where A is symmetric positive definite

- The procedure

$$
\begin{aligned}
& k=0 ; x=0 ; r=b ; \rho_{0}=\|r\|_{2}^{2} \\
& \text { while } \sqrt{\rho_{k}}>\epsilon\|b\|_{2} \text { and } k<k_{\max } \\
& \quad k=k+1 \\
& \quad \text { if } k=1 \\
& \quad p=r
\end{aligned}
$$

Conjugate Gradient Method II

else

$$
\begin{aligned}
& \beta=\rho_{k-1} / \rho_{k-2} \\
& p=r+\beta p
\end{aligned}
$$

end

$$
\begin{aligned}
& w=A p \\
& \alpha=\rho_{k-1} / p^{T} w \\
& x=x+\alpha p \\
& r=r-\alpha w \\
& \rho_{k}=\|r\|_{2}^{2}
\end{aligned}
$$

end

Matrix-vector Products I

- Earlier we have shown that the Gauss-Newton matrix is

$$
G=\frac{1}{C} \mathcal{I}+\frac{1}{l} \sum_{i=1}^{l}\left(J^{i}\right)^{T} B^{i} J^{i}
$$

- We have

$$
\begin{equation*}
G \boldsymbol{v}=\frac{1}{C} \boldsymbol{v}+\frac{1}{l} \sum_{i=1}^{l}\left(\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} v\right)\right)\right) \tag{1}
\end{equation*}
$$

Matrix-vector Products II

- If we can calculate

$$
J^{i} v \text { and }\left(J^{i}\right)^{T}(\cdot)
$$

then G is never explicitly stored

- Therefore, we can apply the conjugate gradient (CG) method by a sequence of matrix-vector products.
- But is this approach really feasible?
- We show that memory can be an issue

Memory Cost of Storing Ji

- The Gauss-Newton matrix is

$$
G=\frac{1}{C} \mathcal{I}+\frac{1}{\ell} \sum_{i=1}^{\ell}\left(J^{i}\right)^{T} B^{i} J^{i}
$$

- Its size is

$$
n \times n
$$

where n is the total number of variables

Memory Cost of Storing Ji II

- But storing J^{i} needs

$$
n_{L+1} \times n \times I
$$

where
$n_{L+1}: \#$ nodes in the output layer (\# classes)
I : number of data

- If

$$
n<n_{L+1} \times I
$$

then storing $J^{i}, \forall i$ needs more spaces than G

Memory Cost of Storing Ji III

- Then the Hessian-free method cannot work
- A related question is why in calculating the gradient we didn't get J^{i} and calculate

$$
\begin{aligned}
& \nabla f(\boldsymbol{\theta}) \\
= & \frac{1}{C} \boldsymbol{\theta}+\frac{1}{l} \sum_{i=1}^{\prime}\left(J^{i}\right)^{T} \nabla_{\boldsymbol{z}^{L+1, i}} \xi\left(\boldsymbol{z}^{L+1, i} ; \boldsymbol{y}^{i}, z^{1, i}\right)
\end{aligned}
$$

- Instead we use backpropagation without explicitly storing $J^{i}, \forall i$
- For gradient, J^{i} is used only once

Memory Cost of Storing Ji IV

- However, in each Newton iteration we need Ji several times
- J^{i} is used in every matrix-vector product
- Some techniques can be used to alleviate the memory problem of storing $J^{i}, \forall i$
- Subsampled Hessian Newton method
- Forward and reverse modes of automatic differentiation

Outline

(1) Hessian-free optimization

(2) Subsampled Hessian Newton method
(3) Other consideration

Subsampled Hessian Newton Method I

- We know the gradient needs a sum over all data

$$
\nabla f(\boldsymbol{\theta})=\frac{1}{C} \boldsymbol{\theta}+\frac{1}{l} \sum_{i=1}^{l} \nabla_{\boldsymbol{\theta}} \xi_{i}
$$

- In stochastic gradient, we do mini-batch
- Like mini-batch, in Newton we can use a subset of data for matrix-vector products and

function/gradient evaluation

Subsampled Hessian Newton Method II

- This is possible: subsampled Newton method (Byrd et al., 2011; Martens, 2010; Wang et al., 2015)
- Assume the large number of data points are from the same distribution
- We can select a subset $S \subset\{1, \ldots, I\}$ and have

$$
G^{S}=\frac{1}{C} \mathcal{I}+\frac{1}{|S|} \sum_{i \in S}\left(J^{i}\right)^{T} B^{i} J^{i} \approx G
$$

Subsampled Hessian Newton Method III

- Then the matrix-vector product becomes

$$
\begin{equation*}
G^{S} \boldsymbol{v}=\frac{1}{C} v+\frac{1}{|S|} \sum_{i \in S}\left(\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} v\right)\right)\right) \tag{2}
\end{equation*}
$$

- The cost of storing J^{i} is reduced from

$$
n_{L+1} \times n \times 1
$$

to

$$
n_{L+1} \times n \times|S|
$$

Subsampled Hessian Newton Method IV

- Typically a choice may be

$$
|S|=(0.05 \text { or } 0.01) \times 1
$$

- The selection of the size $|S|$ is still an issue worth investigation
- At this moment we consider subset for matrix-vector products and
full set for function/gradient evaluation
- Reason: no matter what a subset S is chosen,

Subsampled Hessian Newton Method V

G^{S} is still positive definite

- Then

$$
G^{S} \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

leads to

$$
\nabla f(\boldsymbol{\theta})^{T} \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})^{T}\left(G^{S}\right)^{-1} \nabla f(\boldsymbol{\theta})<0
$$

- If we use a subset for the gradient, then the above inequality may not hold
- Then the situation becomes more complicated

Subsampled Hessian Newton Method VI

- Note that if using the full set for function/gradient evaluations, we have theoretical asymptotic convergence to a stationary point (Byrd et al., 2011)

Outline

(1) Hessian-free optimization

(2) Subsampled Hessian Newton method

(3) Other consideration

Levenberg-Marquardt method I

- Besides backtracking line search, in optimization another way to adjust the direction is the Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 1963)
- It modifies the linear system to

$$
\left(G^{S}+\lambda \mathcal{I}\right) \boldsymbol{d}=-\nabla f(\boldsymbol{\theta})
$$

- The value λ is decided by how good the function reduction is.
- It's updated by the following settings.

Levenberg-Marquardt method II

- If $\boldsymbol{\theta}+\boldsymbol{d}$ is the next iterate after line search, we define

$$
\rho=\frac{f(\boldsymbol{\theta}+\boldsymbol{d})-f(\boldsymbol{\theta})}{\nabla f(\boldsymbol{\theta})^{T} \boldsymbol{d}+\frac{1}{2} \boldsymbol{d}^{T} G^{S} \boldsymbol{d}}
$$

as the ratio of

actual function reduction

 predicted reduction
Levenberg-Marquardt method III

- By using ρ, the parameter $\lambda_{\text {next }}$ for the next iteration is decided by

$$
\lambda_{\text {next }}= \begin{cases}\lambda \times \text { drop } & \rho>\rho_{\text {upper }} \\ \lambda & \rho_{\text {lower }} \leq \rho \leq \rho_{\text {upper }}, \\ \lambda \times \text { boost } & \text { otherwise }\end{cases}
$$

where

$$
\text { drop }<1 \text {, boost }>1
$$

are given constants.

- In our code you can see

Levenberg-Marquardt method IV

param.drop $=2 / 3$;
param.boost $=3 / 2$;
and

$$
\rho_{\text {upper }}=0.75, \rho_{\text {lower }}=0.25
$$

- If the function-value reduction is not satisfactory, λ is enlarged and the resulting direction is closer to the negative gradient.
- In optimization practice, if backtracking line search has been applied, usually there is no need to apply this LM method

Levenberg-Marquardt method V

- However, some past works (e.g., Martens, 2010; Wang et al., 2018) on fully-connected networks seem to show that applying both is useful
- The use of LM in training NN is still an issue to be investigated

Function and Gradient Evaluation I

- Recall in gradient evaluation the following main steps are conducted:

$$
\begin{gathered}
\Delta \leftarrow \operatorname{mat}\left(\operatorname{vec}(\Delta)^{T} P_{\mathrm{pool}}^{m, i}\right) \\
\frac{\partial \xi_{i}}{\partial W^{m}}=\Delta \cdot \phi\left(\operatorname{pad}\left(Z^{m, i}\right)\right)^{T} \\
\Delta \leftarrow \operatorname{vec}\left(\left(W^{m}\right)^{T} \Delta\right)^{T} P_{\phi}^{m} P_{\mathrm{pad}}^{m} \\
\Delta \leftarrow \Delta \odot I\left[Z^{m, i}\right]
\end{gathered}
$$

Function and Gradient Evaluation II

- Clearly we must store Z_{i}, or even $\phi\left(\operatorname{pad}\left(Z^{m, i}\right), \forall i\right.$ after the forward process.
- This is fine for stochastic gradient as we use a small batch of data
- However, for Newton we need the full gradient so we can check the sufficient decrease condition
- The memory cost is then
\propto \# total data
- This is not feasible

Function and Gradient Evaluation III

- Fortunately we can calculate the gradient by the sum of sub-gradients

$$
\begin{align*}
\frac{\partial f}{\partial W^{m}} & =\frac{1}{C} W^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial W^{m}} \tag{3}\\
\frac{\partial f}{\partial \boldsymbol{b}^{m}} & =\frac{1}{C} \boldsymbol{b}^{m}+\frac{1}{l} \sum_{i=1}^{l} \frac{\partial \xi_{i}}{\partial \boldsymbol{b}^{m}} \tag{4}
\end{align*}
$$

- Thus we can split the index set $\{1, \ldots, l\}$ of data to, for example, R equal-sized subsets S_{1}, \ldots, S_{R}

Function and Gradient Evaluation IV

- We sequentially calculate the result corresponding to each subset and accumulate them for the final output.
- For example, to have $Z^{m, i}$ needed in the backward process for calculating the gradient, we must store them after the forward process for function evaluation.
- By using a subset, only $Z^{m, i}$ with i in this subset are stored, so the memory usage can be dramatically reduced.

The Overall Procedure I

- Let's check the Newton method code at https://github.com/cjlin1/simpleNN/blob/ master/MATLAB/opt/newton.m

Discussion I

- We have known that at each iteration

$$
G^{S}=\frac{1}{C} \mathcal{I}+\frac{1}{|S|} \sum_{i \in S}\left(J^{i}\right)^{T} B^{i} J^{i}
$$

is considered

- The remaining issues are
- How to calculate

$$
J^{i}, \forall i \in S
$$

- How to calculate

$$
\left(J^{i}\right)^{T}\left(B^{i}\left(J^{i} v\right)\right)
$$

