Gradient Calculation

Chih-Jen Lin
National Taiwan University
Last updated: May 25, 2020

1/60

N
Outline

@ Introduction
© Gradient Calculation
© Computational Complexity

@ Discussion

Chih-Jen Lin (National Taiwan Univ.)

2/60

QOutline

@ Introduction

Chih-Jen Lin (National Taiwan Univ.)

3/60

Introduction |

@ Many deep learning courses have contents like

fully-connected networks
its optimization problem
its gradient (back propagation)

other types of networks (e.g., CNN)

e If | am a student of such courses, after seeing the
significant differences of CNN from fully-connected
networks, | wonder how the back propagation can

be done

Chih-Jen Lin (National Taiwan Univ.) 4/60

Introduction ||

@ The problem is that back propagation for CNN
seems to be very complicated

@ So fewer people talk about details

@ Challenge: can we clearly describe it in a simple
way?

@ That's what we would like to try here

Chih-Jen Lin (National Taiwan Univ.) 5/60

.
Outline

© Gradient Calculation

Chih-Jen Lin (National Taiwan Univ.)

6/60

Gradient |

@ Consider two layers m and m + 1. The variables
between them are W™ and b, so we aim to
calculate

/

oF 1. 1 05
owm _EW +7Z<9Wm’ (1)
of 1, o¢;

557~ " Zabm' 2)

@ Note that (1) is in a matrix form

Chih-Jen Lin (National Taiwan Univ.) 7/60

Gradient |l

@ Following past developments such as Vedaldi and
Lenc (2015), it is easier to transform them to a
vector form for the derivation.

Chih-Jen Lin (National Taiwan Univ.) 8/60

Vector Form |

@ For the convolutional layers, recall that

Smi —pym mat(PQTPg;dVGC(Zm’i))hmhmdmxam bm

conv ~conv
7

-~

H(pad(Zm)
b"1Lzn b

conv ~conv

Zmrhi— mat(P;;;VGC(U(Sm’i)))dm“><a’"+1b’"“7 (3)

Chih-Jen Lin (National Taiwan Univ.) 9/60

Vector Form ||

@ We have

vec(S™")
—vec(W™o(pad(Z™))) + vec(b™], 4)

conv ~conv

= (Zag bz, ® W) vec(¢(pad(Z™)))+

conv “conv

(Lo, b, ® Zgmea)B™ (4)
= (¢(pad(Z™"))" & Zym1) vec(W™)+
(Lag,, b, @ Lagmea) D™, (5)

Chih-Jen Lin (National Taiwan Univ.) 10 /60

Vector Form I

where 7 is an identity matrix, and (4) and (5) are
respectively from

vec(AB) = (Z ® A)vec(B) (6)
= (BT @ T)vec(A), (7)

vec(AB)T = vec(B)"(Z ® AT) (8)
— vec(A)(B®I) (9)

@ Here ® is the Kronecker product.

Chih-Jen Lin (National Taiwan Univ.) 11 /60

Vector Form IV

@ What's the Kronecker product? If

A E Ran

then
3118

AR B =
amlB

a much bigger matrix

Chih-Jen Lin (National Taiwan Univ.)

al,,B

amn B

12 /60

Vector Form V

@ For the fully-connected layers,

§Mi
=Wz 4+ p"

=(ZieW"z™ + (1, Z,,,)b" (10)
=((z™)" ©I,,,,) vec(W™) + (1, ® Z,,,,,)b",

(11)

where (10) and (11) are from (6) and (7),
respectively.

Chih-Jen Lin (National Taiwan Univ.) 13 /60

Vector Form VI

@ An advantage of using (4) and (10) is that they are
in the same form.

@ Further, if for fully-connected layers we define
p(pad(z™)) =T, z™ L °<m<L+1,

then (5) and (11) are in the same form.

@ Thus we can derive the gradient of convolutional
and fully-connected layers together

14 /60

Gradient Calculation |

@ For convolutional layers, from (5),
;i B ;i dvec(S™)
dvec(Wm)" dvec(S™)T dvec(Wm)”

. 85/ m,i\\T i1
_—6vec(5m7")T (¢(Pad(z) ® Iy)

—vec (aii;,.cp(pad(zmv")f) ' (12)

where (12) is from (9).
@ We applied chain rule here

Chih-Jen Lin (National Taiwan Univ.) 15 /60

Gradient Calculation Il

@ Note that we define

o n
8x1 e 0x
dy Ix|
pyte il DA (13)
(x) Ayy| Ayyy|
oxy 8X|X|

where x and y are column vectors, and |x|, |y| are

their lengths.

Chih-Jen Lin (National Taiwan Univ.) 16 / 60

Gradient Calculation Il

@ Thus if
y = Ax
then
dy A A
= |An =A

Chih-Jen Lin (National Taiwan Univ.)

17 /60

Gradient Calculation IV

e Similarly
05 _ 0§, Ovec(S™)
8(bm)T Gvec(Sm,i)T 8(bm)T
agi
T Avec(SmiyT]lam m Q) Lym+
@vec(Sm,i)T(Conv Dlany d)

3 !
— .]1 am m 3 14
vec <85m)/ convbconv> ()

where (14) is from (9).

Chih-Jen Lin (National Taiwan Univ.) 18 /60

Gradient Calculation V

e To calculate (12), ¢(pad(Z™)) has been available
from the forward process of calculating the function
value.

e In (12) and (14), 9¢;/0S™' is also needed

@ We will show that it can be obtained by a backward
process.

19/60

Calculation of 9¢;/0S™' |

e What we will do is to assume that 9¢;/0Z™ L1 is
available

@ Then we show details of calculating

0§, and OE;
é}f;nui é}é?n@i

for layer m.

@ Thus a back propagation process

20 /60

Calculation of 9&;/0S™" Il

@ We have the following workflow.

Z™' ¢« padding < convolution < o(S™")
- 1 (15)
< pooling <+ Z™ 4,

@ Assume the RELU activation function is used

85,’ . 85, 6V€C(J(5m’i))
Ovec(S™NT — dvec(a(S™))T Ovec(Sm™)T

Chih-Jen Lin (National Taiwan Univ.) 21 /60

Calculation of 9&;/0S™ Il

@ Note that _
Ovec(a(S™"))
Ovec(S™N)T

is a squared diagonal matrix of

|vec(5m’i)| X \vec(Sm’i)|

@ Recall that we assume

o) {1 if x > 0

0 otherwise

though o(x) is not differentiable at x = 0

Chih-Jen Lin (National Taiwan Univ.)

22 /60

Calculation of 9&;/0S™" IV

@ We can define

. 1 ifS™ >0
[[S™ — (p.q) :
[](p’q) {0 otherwise,
and have
& &

Ovec(Sm™N)T - dvec(a(S™))T © vec(/[S™])

where ® is Hadamard product (i.e., element-wise
products)

Chih-Jen Lin (National Taiwan Univ.)

23 /60

Calculation of 9¢;/0S™' V

@ Q: can we extend this to other scalar activation
functions?

@ Yes, the general form is

85,- . afi
Ovec(S™N T dvec(a(S™))

@ Next,

Chih-Jen Lin (National Taiwan Univ.)

- ® vec(a'(S™))"

24 /60

Calculation of 9&;/0S™" VI

o€,
Ovec(Sm™N)T

B O Ovec(Z™ 1) Ovec(a(S™))

 Ovec(Zm™ENT dyec(a(Smi)) T dvec(S™)T

_ & Ovec(ZmT11) y iy
(8vec(Zm+1,i)Tavec(g(sm))r) © vec(I[S™])

0 i m,i m,i
(et PR) © vesllls™)T (16)

o Note that (16) is from (3)

Chih-Jen Lin (National Taiwan Univ.) 25 /60

Calculation of 9&;/0S™ VII

@ If a general scalar activation function is considered,
(16) is changed to

O
dvec(S™N)T

agi m,i I(cm,i
— <8V€‘C(Zm+l,i)T Ppol;|> ® vec(a (5 ;))T

@ In the end we calculate 0¢;/0Z™ and pass it to the
previous layer.

Chih-Jen Lin (National Taiwan Univ.) 26 /60

Calculation of 9¢;/0S™ VIII

0&;
_ ;i Ovec(S™') Avec(d(pad(Z™)
~ vec(S™)T dvec(g(pad(Zmi)))T Ovec(pad(Z™i))T

Ovec(pad(Z™"))

dvec(Zmi)"

__ 0% (Zom b @ W™) PP (17)
aveC(Sm’,-)T dconv Peonv ¢ " pad
.

—vec ((Wm)T(?ii’w,) Py Poads (18

Chih-Jen Lin (National Taiwan Univ.) 27 /60

Calculation of 9&;/0S™" IX

where (17) is from (4) and (18) is from (8).

Chih-Jen Lin (National Taiwan Univ.)

28 /60

Fully-connected Layers |

@ For fully-connected layers, by the same form in (10),
(11), (4) and (5), we immediately get results from
(12), (14), (16) and (18).

85/ o 85/ m,iNT !

8vec(Wm)T = Vec (asm,i(z)) (19)
ok 0§

a(b™’ o(smi)’ 20)

Chih-Jen Lin (National Taiwan Univ.) 29 /60

Fully-connected Layers |l

afi :<(m)T 85/)TI,,

8(Zm’)T (sm/)
(7% >T
() 5iey)
where
o5 0§ o 1[s™]T.

a(sm,i)T a(szrl,i)T

(21)

(22)

e Finally, we check the initial values of the backward

process.

Chih-Jen Lin (National Taiwan Univ.)

30/ 60

Fully-connected Layers I

@ Assume that the squared loss is used and in the last
layer we have an identity activation function

@ Then

0&; o& 0

_o(i i
2(z y'), and Seli — DLl

OzL+Ll.i o

31/60

Notes on Practical Implementations |

@ Recall we said that in

agi 86/

- m,i\\T
é9t4/’n - é)f;,n7igb(F)a(j(£Z)))

Z™'" is available from the forward process

@ Therefore _
Z™' N'm

are stored.

32/60

Notes on Practical Implementations Il

@ But we also need S™ for

i
Ovec(Sm™T

:(% va") © vec(I[s™))7

avec(Zm+1,i)T pool

(23)

@ Do we need to store both Z™' and S™?

33/60

Notes on Practical Implementations Il|

e We can avoid storing S™',Vm by replacing (23)
with
0&;
Hvec(Smi)T

(% ovecgzm T | P
Ovec(Zm+1.7)

(24)

@ Why? Let’s look at the relation between Z™*1/ and
Sm,i

Zm-l-l,i — mat(Pm’ilveC(U(SmJ)))

poo

Chih-Jen Lin (National Taiwan Univ.) 34 /60

Notes on Practical Implementations |V

e ZM™Liis a “smaller matrix” than S™/
@ That is, (23) is a “reverse mapping” of the pooling
operation
e In (23),
851' % m,i
Avec(Zm+1i)T pol
generates a large zero vector and puts values of

O&;/Ovec(Z™)T into positions selected earlier in
the max pooling operation.

(25)

@ Then, element-wise multiplications of (25) and
I[S™]T are conducted.

Chih-Jen Lin (National Taiwan Univ.) 35 /60

Notes on Practical Implementations V

@ Positions not selected in the max pooling procedure
are zeros after (25)

@ They are still zeros after the Hadamard product
between (25) and /[S™/]T
@ Thus, (23) and (24) give the same results.

@ An illustration using our earlier example. This
illustration was generated with the help of
Cheng-Hung Liu in my group

36 /60

Notes on Practical Implementations VI

@ Recall an earlier pooling example is

Notes on Practical Implementations VII

@ We have that

|

Ppoolvec(image) =

S O B~ Ol

e If using (23),
v Poool © vec(I[S™) T
00000V10V200000V3V40]

=
©
[

1111111111111}
N ve N e 000N N e e N0

38/60

Notes on Practical Implementations VII|

o If using (24),

(v! ©vec(l[Z™])) Pool
=(v o1 1 1 1])Pmol
=[00000 v 0w 000O0O vy v O]

@ So they are the same
@ In the derivation we used the properties of

e RELU activation function and
e max pooling

Chih-Jen Lin (National Taiwan Univ.) 39 /60

Notes on Practical Implementations X

to get

a Z™ component > 0 or not

&the corresponding ¢/ (S™') component > 0 or not

@ For general cases we might not be able to avoid
storing o'(5™')7

@ We may go back to this issue later in discussing the
implementation issues

40/60

Summary of Operations |

@ We show convolutional layers only and the bias term
is omitted

@ Operations in order

06
Hvec(Smi)T
85,— L,imT / (26)
) (aveC(ZmH,i)T ez) o
0 i 0 i m,i
S = e o(pad(ZM)T ()

Chih-Jen Lin (National Taiwan Univ.) 41/60

Summary of Operations ||

93
Ovec(Zmi

m 85/ ' mpm
)T = vec ((W)T@Sm,i) Py Poads
(28)
@ Note that after (26), we change

3

a vector —————— to a matrix

dvec(Smi)T osm!

i

because in (27) and (28), matrix form is needed
@ In (26), information of the next layer is used.

Chih-Jen Lin (National Taiwan Univ.) 42 /60

Summary of Operations |l|

@ Instead we can do

%3
Ovec(Z™1)

= O vec(I[Z™)T

in the end of the current layer

This becomes the information passed to the
previous layer

@ Then only information in the current layer is used

43 /60

Summary of Operations |V

@ Finally an implementation for one convolutional
layer: _
A < mat(vec(A)TP™)

pool
IEi
owm

A« vec (W™TA) PrPD,
A~ AGI[Z™]

= A ¢(pad(Z™))"

@ A sample segment of code

44 /60

Summary of Operations V

form=1LC : -1 : 1
if model.wd_subimage_pool(m) > 1
dXidS = reshape(vTP(param, model, net, m,
dXidS, ’pool_gradient’),
model.ch_input(m+1), []);
end
phiZ = padding_and_phiZ(model, net, m);
net.dlossdW{m} = dXidS#*phiZ’;
net.dlossdb{m} = dXidS*ones(model.wd_conv(m):
model.ht_conv(m)*S_k, 1);

45 /60

Chih-Jen Lin (National Taiwan Univ.)

Summary of Operations VI

ifm>1
V = model.weight{m}’ * dXidS;
dXidS = reshape(vTP(param, model, net, m,
V, ’phi_gradient’),
model.ch_input(m), [1);

% vTP_pad

a = model.ht_pad(m); b = model.wd_pad(m);

dXidS = dXidS(:, net.idx_pad{m} +
axb*x[0:S_k-1]);

Chih-Jen Lin (National Taiwan Univ.) 46 / 60

Summary of Operations VII

% activation function
dXidS = dXidS.*(net.Z{m} > 0);
end
end

47 /60

Storing ¢(pad(Z™"))

@ From the above summary, we see that

¢(pad(Z™"))

is calculated twice in both forward and backward
processes

If this expansion is expensive, we can store it

°
@ But memory is a concern as this is a huge matrix
@ So this setting trades space for time

°

It's more suitable for CPU environments

Chih-Jen Lin (National Taiwan Univ.)

48 /60

.
Outline

© Computational Complexity

Chih-Jen Lin (National Taiwan Univ.)

49 /60

Complexity |

@ To see where the computational bottleneck is, it's
important to check the complexity of major
operations

@ Assume / is the number of data (for the case of
calculating the whole gradient)

@ For stochastic gradient, / becomes the size of a
mini-batch

Chih-Jen Lin (National Taiwan Univ.) 50 /60

Computational Complexity

Complexity Il

e Forward:
Wmmat(P(;”PID”;dvec(Zm’i))
=W"¢(pad(Z™))
d(pad(Z™) : O(I x K"h™d™a™ bT)

conv -conv

W) O x d™t A"h™d™ Q" bT)

conv-conv

Zm+Li mat(Pm”'lvec(O(Sm’i)))

poo
(/)(/ < hmhmdm—‘rlam-i-l bm+l)
=O(I x d™1ta™ bT)

conv~conv

Chih-Jen Lin (National Taiwan Univ.) 51 /60

Computational Complexity

Complexity I

e Backward:
A mat(vec(A)TPpool)
O(l X dm+1 convbg(])nv
85,' _ m,i\\T
Gyym — Dé(pad(Z™))
o x d™*t gm bm . A"h™d™).

A < vec ((W’”)TA) ¢ pad

Chih-Jen Lin (National Taiwan Univ.) 52 /60

Complexity IV
(W™TA: O x h™h™d™ d™t " b

conv COHV)

vec(-)PJ : O(I x h™h™d™al bion,)

conv = conv

Here we convert a matrix of

h"h"d™ x aZ bl

conv~conv

to a smaller matrix

m m m
d™ x pad bpad

@ We see that matrix-matrix products are the
bottleneck

Chih-Jen Lin (National Taiwan Univ.)

53 /60

Complexity V

@ If so, why check others?

@ The issue is that matrix-matrix products may be
better optimized

@ You will get first-hand experiences in doing projects

Chih-Jen Lin (National Taiwan Univ.) 54 /60

QOutline

@ Discussion

Chih-Jen Lin (National Taiwan Univ.)

55 /60

Discussion |

@ We tried to have a simple way to describe the
gradient calculation for CNN

@ |s the description good enough? Can we do better?

Chih-Jen Lin (National Taiwan Univ.) 56 /60

Discussion: Pooling and Differentiability |

@ Recall we have

Z™ = mat(P! vec(a(S™))) gt g,

@ We note that
Pm,i

pool
is not a constant 0/1 matrix

e It depends on ¢(S™') to decide the positions of 0
and 1.

Chih-Jen Lin (National Taiwan Univ.)

57 /60

Discussion: Pooling and Differentiability Il

@ Thus like the RELU activation function, max
pooling is another place to cause that f(8) is not
differentiable

@ However, it is almost differentiable around the
current point

ey =max ([0 42])

A1 > A1z, Agr, A

58 /60

@ Consider

and

Discussion: Pooling and Differentiability Il

@ Then

VF(A) =

Al A
t A=
° [Azl A22]

O OO

@ This explains why we can use P:;’(gl in function and
gradient evaluations

Chih-Jen Lin (National Taiwan Univ.) 59 /60

References |

A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural networks for matlab. In
Proceedings of the 23rd ACM International Conference on Multimedia, pages 689-692,
2015

Chih-Jen Lin (National Taiwan Univ.)

60 / 60

	Introduction
	Gradient Calculation
	Computational Complexity
	Discussion
	References

