Gradient Calculation

Chih-Jen Lin National Taiwan University Last updated: May 25, 2020

Outline

- Introduction
- Gradient Calculation
- Computational Complexity
- Discussion

Outline

- Introduction
- Gradient Calculation
- Computational Complexity
- Discussion

Introduction I

- Many deep learning courses have contents like
 - fully-connected networks
 - its optimization problem
 - its gradient (back propagation)
 - ...
 - other types of networks (e.g., CNN)
 - ...
- If I am a student of such courses, after seeing the significant differences of CNN from fully-connected networks, I wonder how the back propagation can be done

Introduction II

- The problem is that back propagation for CNN seems to be very complicated
- So fewer people talk about details
- Challenge: can we clearly describe it in a simple way?
- That's what we would like to try here

Outline

- Introduction
- Gradient Calculation
- Computational Complexity
- Discussion

Gradient I

• Consider two layers m and m+1. The variables between them are W^m and \boldsymbol{b}^m , so we aim to calculate

$$\frac{\partial f}{\partial W^m} = \frac{1}{C}W^m + \frac{1}{I}\sum_{i=1}^{I} \frac{\partial \xi_i}{\partial W^m},\tag{1}$$

$$\frac{\partial f}{\partial \boldsymbol{b}^{m}} = \frac{1}{C} \boldsymbol{b}^{m} + \frac{1}{I} \sum_{i=1}^{I} \frac{\partial \xi_{i}}{\partial \boldsymbol{b}^{m}}.$$
 (2)

• Note that (1) is in a matrix form

Gradient II

• Following past developments such as Vedaldi and Lenc (2015), it is easier to transform them to a vector form for the derivation.

Vector Form I

• For the convolutional layers, recall that

$$S^{m,i} = W^m \underbrace{\text{mat}(P_{\phi}^m P_{\text{pad}}^m \text{vec}(Z^{m,i}))_{h^m h^m d^m \times a_{\text{conv}}^m b_{\text{conv}}^m}}_{\phi(\text{pad}(Z^{m,i}))} + \underbrace{b^m \mathbb{1}_{a_{\text{conv}}^m b_{\text{conv}}^m}^T b_{\text{conv}}^m}_{\phi(pad}(Z^{m,i}))$$

$$Z^{m+1,i} = \max(P_{\text{pool}}^{m,i} \text{vec}(\sigma(S^{m,i})))_{d^{m+1} \times a^{m+1}b^{m+1}}, \quad (3)$$

Vector Form II

We have

$$\operatorname{vec}(S^{m,i}) = \operatorname{vec}(W^m \phi(\operatorname{pad}(Z^{m,i}))) + \operatorname{vec}(\boldsymbol{b}^m \mathbb{1}_{a_{\operatorname{conv}}^m b_{\operatorname{conv}}^m}^T)$$

$$= (\mathcal{I}_{a_{\operatorname{conv}}^m b_{\operatorname{conv}}^m} \otimes W^m) \operatorname{vec}(\phi(\operatorname{pad}(Z^{m,i}))) + (\mathbb{1}_{a_{\operatorname{conv}}^m b_{\operatorname{conv}}^m} \otimes \mathcal{I}_{d^{m+1}}) \boldsymbol{b}^m$$

$$= (\phi(\operatorname{pad}(Z^{m,i}))^T \otimes \mathcal{I}_{d^{m+1}}) \operatorname{vec}(W^m) + (\mathbb{1}_{a_{\operatorname{conv}}^m b_{\operatorname{conv}}^m} \otimes \mathcal{I}_{d^{m+1}}) \boldsymbol{b}^m,$$

$$(5)$$

Vector Form III

where \mathcal{I} is an identity matrix, and (4) and (5) are respectively from

$$\operatorname{vec}(AB) = (\mathcal{I} \otimes A)\operatorname{vec}(B) \tag{6}$$

$$= (B^T \otimes \mathcal{I}) \text{vec}(A),$$
 (7)

$$\operatorname{vec}(AB)^T = \operatorname{vec}(B)^T (\mathcal{I} \otimes A^T) \tag{8}$$

$$= \operatorname{vec}(A)^{T}(B \otimes \mathcal{I}) \tag{9}$$

• Here \otimes is the Kronecker product.

Vector Form IV

• What's the Kronecker product? If

$$A \in \mathbb{R}^{m \times n}$$

then

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ & \vdots & \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix},$$

a much bigger matrix

Vector Form V

• For the fully-connected layers,

$$s^{m,i}$$

$$= W^m z^{m,i} + b^m$$

$$= (\mathcal{I}_1 \otimes W^m) z^{m,i} + (\mathbb{1}_1 \otimes \mathcal{I}_{n_{m+1}}) b^m \qquad (10)$$

$$= ((z^{m,i})^T \otimes \mathcal{I}_{n_{m+1}}) \operatorname{vec}(W^m) + (\mathbb{1}_1 \otimes \mathcal{I}_{n_{m+1}}) b^m, \qquad (11)$$

where (10) and (11) are from (6) and (7), respectively.

Vector Form VI

- An advantage of using (4) and (10) is that they are in the same form.
- Further, if for fully-connected layers we define

$$\phi(\operatorname{pad}(\mathbf{z}^{m,i})) = \mathcal{I}_{n_m} \mathbf{z}^{m,i}, \ L^c < m \leq L+1,$$

- then (5) and (11) are in the same form.
- Thus we can derive the gradient of convolutional and fully-connected layers together

Gradient Calculation I

• For convolutional layers, from (5),

$$\frac{\partial \xi_{i}}{\partial \text{vec}(W^{m})^{T}} = \frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} \frac{\partial \text{vec}(S^{m,i})}{\partial \text{vec}(W^{m})^{T}}
= \frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} \left(\phi(\text{pad}(Z^{m,i}))^{T} \otimes \mathcal{I}_{d^{m+1}} \right)
= \text{vec} \left(\frac{\partial \xi_{i}}{\partial S^{m,i}} \phi(\text{pad}(Z^{m,i}))^{T} \right)^{T}$$
(12)

where (12) is from (9).

We applied chain rule here

Gradient Calculation II

Note that we define

$$\frac{\partial \mathbf{y}}{\partial (\mathbf{x})^{T}} = \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{|x|}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{|y|}}{\partial x_{1}} & \cdots & \frac{\partial y_{|y|}}{\partial x_{|x|}} \end{bmatrix}, \tag{13}$$

where x and y are column vectors, and |x|, |y| are their lengths.

Gradient Calculation III

Thus if

$$y = Ax$$

then

$$\frac{\partial \mathbf{y}}{\partial (\mathbf{x})^T} = \begin{bmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & & \\ \vdots & & \end{bmatrix} = A$$

Gradient Calculation IV

Similarly

$$\frac{\partial \xi_{i}}{\partial (\boldsymbol{b}^{m})^{T}} = \frac{\partial \xi_{i}}{\partial \operatorname{vec}(S^{m,i})^{T}} \frac{\partial \operatorname{vec}(S^{m,i})}{\partial (\boldsymbol{b}^{m})^{T}} \\
= \frac{\partial \xi_{i}}{\partial \operatorname{vec}(S^{m,i})^{T}} \left(\mathbb{1}_{a_{\operatorname{conv}}^{m} b_{\operatorname{conv}}^{m}} \otimes \mathcal{I}_{d^{m+1}} \right) \\
= \operatorname{vec} \left(\frac{\partial \xi_{i}}{\partial S^{m,i}} \mathbb{1}_{a_{\operatorname{conv}}^{m} b_{\operatorname{conv}}^{m}} \right)^{T}, \tag{14}$$

where (14) is from (9).

Gradient Calculation V

- To calculate (12), $\phi(\text{pad}(Z^{m,i}))$ has been available from the forward process of calculating the function value.
- In (12) and (14), $\partial \xi_i/\partial S^{m,i}$ is also needed
- We will show that it can be obtained by a backward process.

Calculation of $\partial \xi_i / \partial S^{m,i}$ I

- What we will do is to assume that $\partial \xi_i / \partial Z^{m+1,i}$ is available
- Then we show details of calculating

$$\frac{\partial \xi_i}{\partial S^{m,i}}$$
 and $\frac{\partial \xi_i}{\partial Z^{m,i}}$

for layer m.

Thus a back propagation process

Calculation of $\partial \xi_i / \partial S^{m,i}$ II

• We have the following workflow.

$$Z^{m,i} \leftarrow \mathsf{padding} \leftarrow \mathsf{convolution} \leftarrow \sigma(S^{m,i})$$

 $\leftarrow \mathsf{pooling} \leftarrow Z^{m+1,i}.$ (15)

Assume the RELU activation function is used

$$\frac{\partial \xi_i}{\partial \text{vec}(S^{m,i})^T} = \frac{\partial \xi_i}{\partial \text{vec}(\sigma(S^{m,i}))^T} \frac{\partial \text{vec}(\sigma(S^{m,i}))}{\partial \text{vec}(S^{m,i})^T}$$

Calculation of $\partial \xi_i / \partial S^{m,i}$ III

Note that

$$\frac{\partial \text{vec}(\sigma(S^{m,i}))}{\partial \text{vec}(S^{m,i})^T}$$

is a squared diagonal matrix of

$$|\operatorname{vec}(S^{m,i})| \times |\operatorname{vec}(S^{m,i})|$$

Recall that we assume

$$\sigma'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

though $\sigma(x)$ is not differentiable at x = 0

Calculation of $\partial \xi_i / \partial S^{m,i}$ IV

We can define

$$I[S^{m,i}]_{(p,q)} = egin{cases} 1 & ext{if } S^{m,i}_{(p,q)} > 0, \ 0 & ext{otherwise,} \end{cases}$$

and have

$$\frac{\partial \xi_i}{\partial \text{vec}(S^{m,i})^T} = \frac{\partial \xi_i}{\partial \text{vec}(\sigma(S^{m,i}))^T} \odot \text{vec}(I[S^{m,i}])^T$$

where \odot is Hadamard product (i.e., element-wise products)

Calculation of $\partial \xi_i / \partial S^{m,i}$ V

- Q: can we extend this to other scalar activation functions?
- Yes, the general form is

$$\frac{\partial \xi_i}{\partial \text{vec}(S^{m,i})^T} = \frac{\partial \xi_i}{\partial \text{vec}(\sigma(S^{m,i}))^T} \odot \text{vec}(\sigma'(S^{m,i}))^T$$

Next,

Calculation of $\partial \xi_i / \partial S^{m,i}$ VI

$$\frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} = \frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m+1,i})^{T}} \frac{\partial \text{vec}(Z^{m+1,i})}{\partial \text{vec}(\sigma(S^{m,i}))^{T}} \frac{\partial \text{vec}(\sigma(S^{m,i}))}{\partial \text{vec}(S^{m,i})^{T}} = \left(\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m+1,i})^{T}} \frac{\partial \text{vec}(Z^{m+1,i})}{\partial \text{vec}(\sigma(S^{m,i}))^{T}}\right) \odot \text{vec}(I[S^{m,i}])^{T} = \left(\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m+1,i})^{T}} P_{\text{pool}}^{m,i}\right) \odot \text{vec}(I[S^{m,i}])^{T} \tag{16}$$

• Note that (16) is from (3)

Calculation of $\partial \xi_i / \partial S^{m,i}$ VII

If a general scalar activation function is considered,
 (16) is changed to

$$\begin{split} & \frac{\partial \xi_i}{\partial \text{vec}(S^{m,i})^T} \\ &= \left(\frac{\partial \xi_i}{\partial \text{vec}(Z^{m+1,i})^T} \ P_{\text{pool}}^{m,i} \right) \ \odot \ \text{vec}(\sigma'(S^{m,i}))^T \end{split}$$

• In the end we calculate $\partial \xi_i/\partial Z^{m,i}$ and pass it to the previous layer.

Calculation of $\partial \xi_i / \partial S^{m,i}$ VIII

$$\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m,i})^{T}} = \frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} \frac{\partial \text{vec}(S^{m,i})}{\partial \text{vec}(\phi(\text{pad}(Z^{m,i})))^{T}} \frac{\partial \text{vec}(\phi(\text{pad}(Z^{m,i})))}{\partial \text{vec}(\text{pad}(Z^{m,i}))^{T}} \\
= \frac{\partial \text{vec}(\text{pad}(Z^{m,i}))}{\partial \text{vec}(Z^{m,i})^{T}} = \frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} \left(\mathcal{I}_{a_{\text{conv}}^{m}b_{\text{conv}}^{m}} \otimes W^{m}\right) P_{\phi}^{m} P_{\text{pad}}^{m} \qquad (17)$$

$$= \text{vec}\left((W^{m})^{T} \frac{\partial \xi_{i}}{\partial S^{m,i}}\right)^{T} P_{\phi}^{m} P_{\text{pad}}^{m}, \qquad (18)_{\text{lim}}$$

Calculation of $\partial \xi_i / \partial S^{m,i}$ IX

where (17) is from (4) and (18) is from (8).

Fully-connected Layers I

• For fully-connected layers, by the same form in (10), (11), (4) and (5), we immediately get results from (12), (14), (16) and (18).

$$\frac{\partial \xi_i}{\partial \text{vec}(W^m)^T} = \text{vec}\left(\frac{\partial \xi_i}{\partial \boldsymbol{s}^{m,i}} (\boldsymbol{z}^{m,i})^T\right)^T \tag{19}$$

$$\frac{\partial \xi_i}{\partial (\boldsymbol{b}^m)^T} = \frac{\partial \xi_i}{\partial (\boldsymbol{s}^{m,i})^T}$$
 (20)

Fully-connected Layers II

$$\frac{\partial \xi_{i}}{\partial (\mathbf{z}^{m,i})^{T}} = \left((W^{m})^{T} \frac{\partial \xi_{i}}{\partial (\mathbf{s}^{m,i})} \right)^{T} \mathcal{I}_{n_{m}}
= \left((W^{m})^{T} \frac{\partial \xi_{i}}{\partial (\mathbf{s}^{m,i})} \right)^{T}, \qquad (21)$$

where

$$\frac{\partial \xi_i}{\partial (\mathbf{s}^{m,i})^T} = \frac{\partial \xi_i}{\partial (\mathbf{z}^{m+1,i})^T} \odot I[\mathbf{s}^{m,i}]^T.$$
 (22)

 Finally, we check the initial values of the backward process.

Fully-connected Layers III

- Assume that the squared loss is used and in the last layer we have an identity activation function
- Then

$$\frac{\partial \xi_i}{\partial \mathbf{z}^{L+1,i}} = 2(\mathbf{z}^{L+1,i} - \mathbf{y}^i), \text{ and } \frac{\partial \xi_i}{\partial \mathbf{s}^{L,i}} = \frac{\partial \xi_i}{\partial \mathbf{z}^{L+1,i}}.$$

Notes on Practical Implementations I

Recall we said that in

$$\frac{\partial \xi_i}{\partial W^m} = \frac{\partial \xi_i}{\partial S^{m,i}} \phi(\mathsf{pad}(Z^{m,i}))^T,$$

 $Z^{m,i}$ is available from the forward process

Therefore

$$Z^{m,i}, \forall m$$

are stored.

Notes on Practical Implementations II

• But we also need $S^{m,i}$ for

$$\frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} \qquad (23)$$

$$= \left(\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m+1,i})^{T}} P_{\text{pool}}^{m,i}\right) \odot \text{vec}(I[S^{m,i}])^{T}$$

• Do we need to store both $Z^{m,i}$ and $S^{m,i}$?

Notes on Practical Implementations III

• We can avoid storing $S^{m,i}$, $\forall m$ by replacing (23) with

$$\frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} = \left(\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m+1,i})^{T}} \odot \text{vec}(I[Z^{m+1,i}])^{T}\right) P_{\text{pool}}^{m,i}.$$
(24)

• Why? Let's look at the relation between $Z^{m+1,i}$ and $S^{m,i}$

$$Z^{m+1,i} = \mathsf{mat}(P^{m,i}_{\mathsf{pool}}\mathsf{vec}(\sigma(S^{m,i})))$$

Notes on Practical Implementations IV

- $Z^{m+1,i}$ is a "smaller matrix" than $S^{m,i}$
- That is, (23) is a "reverse mapping" of the pooling operation
- In (23),

$$\frac{\partial \xi_i}{\partial \text{vec}(Z^{m+1,i})^T} \times P_{\text{pool}}^{m,i}$$
 (25)

generates a large zero vector and puts values of $\partial \xi_i / \partial \text{vec}(Z^{m+1,i})^T$ into positions selected earlier in the max pooling operation.

• Then, element-wise multiplications of (25) and $I[S^{m,i}]^T$ are conducted.

Notes on Practical Implementations V

- Positions not selected in the max pooling procedure are zeros after (25)
- They are still zeros after the Hadamard product between (25) and $I[S^{m,i}]^T$
- Thus, (23) and (24) give the same results.
- An illustration using our earlier example. This illustration was generated with the help of Cheng-Hung Liu in my group

Notes on Practical Implementations VI

Recall an earlier pooling example is

image B
$$\begin{bmatrix} 3 & 2 & 3 & 6 \\ 4 & 5 & 4 & 9 \\ \hline 2 & 1 & 2 & 6 \\ 3 & 4 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 9 \\ 4 & 6 \end{bmatrix}$$

The corresponding pooling matrix is

Notes on Practical Implementations VII

We have that

$$P_{\text{pool}} \text{vec(image)} = \begin{bmatrix} 5 \\ 4 \\ 9 \\ 6 \end{bmatrix} = \text{vec}(\begin{bmatrix} 5 & 9 \\ 4 & 6 \end{bmatrix})$$

If using (23),

$$\mathbf{v}^{T} P_{\text{pool}} \odot \text{vec}(I[S^{m}])^{T}
= \begin{bmatrix} 0 & 0 & 0 & 0 & v_{1} & 0 & v_{2} & 0 & 0 & 0 & 0 & v_{3} & v_{4} & 0 \end{bmatrix}
\odot$$

Notes on Practical Implementations VIII

• If using (24),

- So they are the same
- In the derivation we used the properties of
 - RELU activation function and
 - max pooling

Notes on Practical Implementations IX

to get

a $Z^{m+1,i}$ component > 0 or not \Leftrightarrow the corresponding $\sigma'(S^{m,i})$ component > 0 or not

- For general cases we might not be able to avoid storing $\sigma'(S^{m,i})$?
- We may go back to this issue later in discussing the implementation issues

Summary of Operations I

- We show convolutional layers only and the bias term is omitted
- Operations in order

$$\frac{\partial \xi_{i}}{\partial \text{vec}(S^{m,i})^{T}} = \left(\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m+1,i})^{T}} \odot \text{vec}(I[Z^{m+1,i}])^{T}\right) P_{\text{pool}}^{m,i}.$$
(26)

$$\frac{\partial \xi_i}{\partial W^m} = \frac{\partial \xi_i}{\partial S^{m,i}} \phi(\mathsf{pad}(Z^{m,i}))^T \tag{27}$$

Summary of Operations II

$$\frac{\partial \xi_{i}}{\partial \text{vec}(Z^{m,i})^{T}} = \text{vec}\left((W^{m})^{T} \frac{\partial \xi_{i}}{\partial S^{m,i}}\right)^{T} P_{\phi}^{m} P_{\text{pad}}^{m},$$
(28)

Note that after (26), we change

a vector
$$\frac{\partial \xi_i}{\partial \text{vec}(S^{m,i})^T}$$
 to a matrix $\frac{\partial \xi_i}{\partial S^{m,i}}$

because in (27) and (28), matrix form is needed

• In (26), information of the next layer is used.

Summary of Operations III

Instead we can do

$$\frac{\partial \xi_i}{\partial \text{vec}(Z^{m,i})^T} \odot \text{vec}(I[Z^{m,i}])^T$$

in the end of the current layer

This becomes the information passed to the previous layer

Then only information in the current layer is used

Summary of Operations IV

Finally an implementation for one convolutional layer:

$$egin{aligned} \Delta &\leftarrow \mathsf{mat}(\mathsf{vec}(\Delta)^T P_{\mathsf{pool}}^{m,i}) \ &rac{\partial \xi_i}{\partial W^m} = \Delta \cdot \phi(\mathsf{pad}(Z^{m,i}))^T \ &\Delta &\leftarrow \mathsf{vec}\left((W^m)^T \Delta\right)^T P_\phi^m P_{\mathsf{pad}}^m \ &\Delta &\leftarrow \Delta \odot I[Z^{m,i}] \end{aligned}$$

A sample segment of code

Summary of Operations V

```
for m = LC : -1 : 1
   if model.wd_subimage_pool(m) > 1
      dXidS = reshape(vTP(param, model, net, m,
                      dXidS, 'pool_gradient'),
                      model.ch_input(m+1), []);
   end
  phiZ = padding_and_phiZ(model, net, m);
   net.dlossdW{m} = dXidS*phiZ';
  net.dlossdb{m} = dXidS*ones(model.wd conv(m))
                    model.ht_conv(m)*S_k, 1);
```


Summary of Operations VI

```
if m > 1
  V = model.weight{m}' * dXidS;
   dXidS = reshape(vTP(param, model, net, m,
                   V, 'phi_gradient'),
                   model.ch_input(m), []);
  % vTP_pad
   a = model.ht_pad(m); b = model.wd_pad(m);
   dXidS = dXidS(:, net.idx_pad{m} +
                 a*b*[0:S k-1]):
```


Summary of Operations VII

```
% activation function
dXidS = dXidS.*(net.Z{m} > 0);
end
end
```


Storing $\phi(\text{pad}(Z^{m,i}))$

From the above summary, we see that

$$\phi(\mathsf{pad}(Z^{m,i}))$$

is calculated twice in both forward and backward processes

- If this expansion is expensive, we can store it
- But memory is a concern as this is a huge matrix
- So this setting trades space for time
- It's more suitable for CPU environments

Outline

- Introduction
- Gradient Calculation
- Computational Complexity
- Discussion

Complexity I

- To see where the computational bottleneck is, it's important to check the complexity of major operations
- Assume I is the number of data (for the case of calculating the whole gradient)
- For stochastic gradient, / becomes the size of a mini-batch

Complexity II

Forward:

$$W^m ext{mat}(P^m_\phi P^m_{ ext{pad}} ext{vec}(Z^{m,i}))$$
 $=W^m \phi(ext{pad}(Z^{m,i}))$
 $\phi(ext{pad}(Z^{m,i})): \mathcal{O}(I imes h^m h^m d^m a^m_{ ext{conv}} b^m_{ ext{conv}})$
 $W^m \phi(\cdot): \mathcal{O}(I imes d^{m+1} h^m h^m d^m a^m_{ ext{conv}} b^m_{ ext{conv}})$
 $Z^{m+1,i} = ext{mat}(P^{m,i}_{ ext{pool}} ext{vec}(\sigma(S^{m,i})))$
 $\mathcal{O}(I imes h^m d^{m+1} a^{m+1} b^{m+1})$
 $= \mathcal{O}(I imes d^{m+1} a^m_{ ext{conv}} b^m_{ ext{conv}})$

Complexity III

Backward:

$$\Delta \leftarrow \mathsf{mat}(\mathsf{vec}(\Delta)^T P_{\mathsf{pool}}^{m,i})$$
 $\mathcal{O}(I imes d^{m+1} a_{\mathsf{conv}}^m b_{\mathsf{conv}}^m)$ $rac{\partial \xi_i}{\partial W^m} = \Delta \phi(\mathsf{pad}(Z^{m,i}))^T$ $\mathcal{O}(I imes d^{m+1} a_{\mathsf{conv}}^m b_{\mathsf{conv}}^m h^m h^m d^m).$ $\Delta \leftarrow \mathsf{vec}\left((W^m)^T \Delta\right)^T P_\phi^m P_{\mathsf{pad}}^m$

Complexity IV

$$(W^m)^T \Delta : \mathcal{O}(I \times h^m h^m d^m d^{m+1} a^m_{\mathsf{conv}} b^m_{\mathsf{conv}})$$

 $\mathsf{vec}(\cdot) P^m_\phi : \mathcal{O}(I \times h^m h^m d^m a^m_{\mathsf{conv}} b^m_{\mathsf{conv}})$

Here we convert a matrix of

$$h^m h^m d^m \times a_{conv}^m b_{conv}^m$$

to a smaller matrix

$$d^m \times a^m_{\mathsf{pad}} b^m_{\mathsf{pad}}$$

 We see that matrix-matrix products are the bottleneck

Complexity V

- If so, why check others?
- The issue is that matrix-matrix products may be better optimized
- You will get first-hand experiences in doing projects

Outline

- Introduction
- Gradient Calculation
- Computational Complexity
- Discussion

Discussion I

- We tried to have a simple way to describe the gradient calculation for CNN
- Is the description good enough? Can we do better?

Discussion: Pooling and Differentiability I

Recall we have

$$Z^{m+1,i} = \mathsf{mat}(P^{m,i}_{\mathsf{pool}}\mathsf{vec}(\sigma(S^{m,i})))_{d^{m+1}\times \mathsf{a}^{m+1}b^{m+1}},$$

We note that

$$P_{\text{pool}}^{m,i}$$

is not a constant 0/1 matrix

• It depends on $\sigma(S^{m,i})$ to decide the positions of 0 and 1.

Discussion: Pooling and Differentiability II

- Thus like the RELU activation function, max pooling is another place to cause that $f(\theta)$ is not differentiable
- However, it is almost differentiable around the current point
- Consider

$$f(A) = \max \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \right)$$

and

$$A_{11} > A_{12}, A_{21}, A_{22}$$

Discussion: Pooling and Differentiability III

Then

$$abla f(A) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ at } A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

• This explains why we can use $P_{\text{pool}}^{m,i}$ in function and gradient evaluations

References I

A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International Conference on Multimedia, pages 689–692, 2015.

