Optimization Problems for Neural Networks

Chih-Jen Lin
National Taiwan University

Last updated: May 9, 2019
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Minimizing Training Errors

- Basically a classification method starts with minimizing the training errors

\[
\min_{\text{model}} \text{(training errors)}
\]

- That is, all or most training data with labels should be correctly classified by our model

- A model can be a decision tree, a neural network, or other types
For simplicity, let's consider the model to be a vector w.

That is, the decision function is

$$\text{sgn}(w^T x)$$

For any data, x, the predicted label is

$$\begin{cases} 1 & \text{if } w^T x \geq 0 \\ -1 & \text{otherwise} \end{cases}$$
The two-dimensional situation

This seems to be quite restricted, but practically x is in a much higher dimensional space
Minimizing Training Errors (Cont’d)

To characterize the training error, we need a loss function $\xi(w; y, x)$ for each instance (y, x), where

$$y = \pm 1$$

is the label and x is the feature vector.

Ideally we should use 0–1 training loss:

$$\xi(w; y, x) = \begin{cases}
1 & \text{if } yw^T x < 0, \\
0 & \text{otherwise}
\end{cases}$$
However, this function is discontinuous. The optimization problem becomes difficult

\[\xi(w; y, x) \]

We need continuous approximations
Common Loss Functions

- Hinge loss (l1 loss)

\[\xi_{L1}(w; y, x) \equiv \max(0, 1 - yw^T x) \quad (1) \]

- Logistic loss

\[\xi_{LR}(w; y, x) \equiv \log(1 + e^{-yw^T x}) \quad (2) \]

- Support vector machines (SVM): Eq. (1). Logistic regression (LR): (2)

- SVM and LR are two very fundamental classification methods
Logistic regression is very related to SVM
Their performance is usually similar
However, minimizing training losses may not give a good model for future prediction

Overfitting occurs
Overfitting

- See the illustration in the next slide
- For classification,
 You can easily achieve 100% training accuracy
- This is useless
- When training a data set, we should
 Avoid underfitting: small training error
 Avoid overfitting: small testing error
and ▲: training; ○ and △: testing
Regularization

- To minimize the training error we manipulate the \mathbf{w} vector so that it fits the data.
- To avoid overfitting we need a way to make \mathbf{w}’s values less extreme.
- One idea is to make \mathbf{w} values closer to zero.
- We can add, for example,

$$
\frac{\mathbf{w}^T \mathbf{w}}{2} \quad \text{or} \quad \| \mathbf{w} \|_1
$$

...to the function that is minimized.
General Form of Linear Classification

- Training data \(\{y_i, x_i\}, x_i \in \mathbb{R}^n, i = 1, \ldots, l, y_i = \pm 1 \)
- \(l \): \# of data, \(n \): \# of features

\[
\min_{w} f(w), \quad f(w) \equiv \frac{w^T w}{2} + C \sum_{i=1}^{l} \xi(w; y_i, x_i)
\]

- \(w^T w / 2 \): regularization term
- \(\xi(w; y, x) \): loss function
- \(C \): regularization parameter (chosen by users)
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Our training set includes \((y^i, x^i), \ i = 1, \ldots, l\).
\[x^i \in \mathbb{R}^{n_1} \] is the feature vector.
\[y^i \in \mathbb{R}^K \] is the label vector.
As label is now a vector, we change (label, instance) from
\((y_i, x_i)\) to \((y^i, x^i)\)

- \(K\): \# of classes
- If \(x^i\) is in class \(k\), then

\[
y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K
\]
A neural network maps each feature vector to one of the class labels by the connection of nodes.
Fully-connected Networks

- Between two layers a weight matrix maps inputs (the previous layer) to outputs (the next layer).
The weight matrix W^m at the mth layer is

$$W^m = \begin{bmatrix}
w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{m+1}}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m
\end{bmatrix}_{n_{m+1} \times n_m}$$

- n_m: # input features at layer m
- n_{m+1}: # output features at layer m, or # input features at layer $m + 1$
- L: number of layers
Operations Between Two Layers II

- \(n_1 = \# \text{ of features}, \ n_{L+1} = \# \text{ of classes} \)
- Let \(z^m \) be the input of \(m \)th layer. \(z^1 = x \) and \(z^{L+1} \) is the output.
- From \(m \)th layer to \((m + 1)\)th layer

\[
\begin{align*}
 s^m &= W^m z^m, \\
 z_j^{m+1} &= \sigma(s_j^m), \quad j = 1, \ldots, n_{m+1},
\end{align*}
\]

\(\sigma(\cdot) \) is the activation function.
Usually people do a bias term

\[
\begin{bmatrix}
 b_1^m \\
 b_2^m \\
 \vdots \\
 b_{nm+1}^m
\end{bmatrix}_{nm+1 \times 1},
\]

so that

\[s^m = W^m z^m + b^m \]
Operations Between Two Layers IV

- Activation function is an $R \rightarrow R$ transformation. As we are interested in optimization, let’s not worry about why it’s needed.
- We collect all variables:

$$\theta = \begin{bmatrix} \text{vec}(W^1) \\ b^1 \\ \vdots \\ \text{vec}(W^L) \\ b^L \end{bmatrix} \in \mathbb{R}^n$$
n : total \# variables = (n_1 + 1)n_2 + \cdots + (n_L + 1)n_{L+1}

- The vec(\cdot) operator stacks columns of a matrix to a vector
We solve the following optimization problem,

$$\min_\theta f(\theta),$$

where

$$f(\theta) = \frac{1}{2} \theta^T \theta + C \sum_{i=1}^l \xi(z^{L+1,i}(\theta); y^i, x^i).$$

- C: regularization parameter
- $z^{L+1}(\theta) \in R^{n_{L+1}}$: last-layer output vector of x.
- $\xi(z^{L+1}; y, x)$: loss function. Example:

$$\xi(z^{L+1}; y, x) = \|z^{L+1} - y\|^2$$
Optimization Problem II

- The formulation is same as linear classification
- However, the loss function is more complicated
- Further, it’s non-convex
- Note that in the earlier discussion we consider a single instance
- In the training process we actually have for $i = 1, \ldots, l$,

\[
\begin{align*}
 s^{m,i} &= W^m z^{m,i}, \\
 z^{m+1,i}_j &= \sigma(s^{m,i}_j), \quad j = 1, \ldots, n_{m+1},
\end{align*}
\]

This makes the training more complicated
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Why CNN? I

- There are many types of neural networks
- They are suitable for different types of problems
- While deep learning is hot, it’s not always better than other learning methods
- For example, fully-connected networks were evaluated for general classification data (e.g., data from UCI machine learning repository)
- They are not consistently better than random forests or SVM; see the comparisons (Meyer et al., 2003; Fernández-Delgado et al., 2014; Wang et al., 2018).
Why CNN? II

- We are interested in CNN because it’s shown to be significantly better than others on image data.
- That’s one of the main reasons deep learning becomes popular.
- To study optimization algorithms, of course we want to consider an “established” network.
- That’s why CNN was chosen for our discussion.
- However, the problem is that operations in CNN are more complicated than fully-connected networks.
- Most books/papers only give explanation without detailed mathematical forms.
Why CNN? III

- To study the optimization, we need some clean formulations
- So let’s give it a try here
Consider a \(K \)-class classification problem with training data

\[
(y^i, Z^{1,i}), \quad i = 1, \ldots, l.
\]

- \(y^i \): label vector
- \(Z^{1,i} \): input image

If \(Z^{1,i} \) is in class \(k \), then

\[
y^i = [0, \ldots, 0, 1, 0, \ldots, 0]^T \in \mathbb{R}^K.
\]

CNN maps each image \(Z^{1,i} \) to \(y^i \)
Typically, CNN consists of multiple convolutional layers followed by fully-connected layers.

Input and output of a convolutional layer are assumed to be images.
For the current layer, let the input be an image

\[Z^{in} : a^{in} \times b^{in} \times d^{in}. \]

\(a^{in} \): height, \(b^{in} \): width, and \(d^{in} \): \#channels.
The goal is to generate an output image

\[Z^{\text{out},i} \]

of \(d^{\text{out}} \) channels of \(a^{\text{out}} \times b^{\text{out}} \) images.

- Consider \(d^{\text{out}} \) filters.
- Filter \(j \in \{1, \ldots, d^{\text{out}}\} \) has dimensions

\[h \times h \times d^{\text{in}}. \]

\[
\begin{bmatrix}
 w^j_{1,1,1} & w^j_{1,h,1} \\
 \vdots & \vdots \\
 w^j_{h,1,1} & w^j_{h,h,1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 w^j_{1,1,d^{\text{in}}} & w^j_{1,h,d^{\text{in}}} \\
 \vdots & \vdots \\
 w^j_{h,1,d^{\text{in}}} & w^j_{h,h,d^{\text{in}}}
\end{bmatrix}
\]
To compute the \(j \)th channel of output, we scan the input from top-left to bottom-right to obtain the sub-images of size \(h \times h \times d^{in} \).
We then calculate the inner product between each sub-image and the jth filter.

For example, if we start from the upper left corner of the input image, the first sub-image of channel d is

$$
\begin{bmatrix}
Z_{1,1,d}^i & \cdots & Z_{1,h,d}^i \\
\vdots & \ddots & \vdots \\
Z_{h,1,d}^i & \cdots & Z_{h,h,d}^i
\end{bmatrix}.
$$
We then calculate

$$
\sum_{d=1}^{d^{in}} \left\langle \begin{bmatrix}
 z^i_{1,1,d} & \cdots & z^i_{1,h,d} \\
 \vdots & \ddots & \vdots \\
 z^i_{h,1,d} & \cdots & z^i_{h,h,d}
\end{bmatrix},
\begin{bmatrix}
 w^j_{1,1,d} & \cdots & w^j_{1,h,d} \\
 \vdots & \ddots & \vdots \\
 w^j_{h,1,d} & \cdots & w^j_{h,h,d}
\end{bmatrix} \right\rangle + b_j,
$$

where $\langle \cdot, \cdot \rangle$ means the sum of component-wise products between two matrices.

This value becomes the $(1, 1)$ position of the channel j of the output image.
Next, we use other sub-images to produce values in other positions of the output image.

Let the stride s be the number of pixels vertically or horizontally to get sub-images.

For the $(2, 1)$ position of the output image, we move down s pixels vertically to obtain the following sub-image:

\[
\begin{bmatrix}
 z^i_{1+s,1,d} & \cdots & z^i_{1+s,h,d} \\
 \vdots & \ddots & \vdots \\
 z^i_{h+s,1,d} & \cdots & z^i_{h+s,h,d}
\end{bmatrix}.
\]
The (2, 1) position of the channel j of the output image is

$$
\sum_{d=1}^{d_{in}} \left\langle \begin{bmatrix}
Z_{1+s,1,d}^j & \cdots & Z_{1+s,h,d}^j \\
\vdots & \ddots & \vdots \\
Z_{h+s,1,d}^j & \cdots & Z_{h+s,h,d}^j
\end{bmatrix},
\begin{bmatrix}
w_{1,1,d}^j & \cdots & w_{1,h,d}^j \\
\vdots & \ddots & \vdots \\
w_{h,1,d}^j & \cdots & w_{h,h,d}^j
\end{bmatrix} \right\rangle + b_j.
$$

(4)
Assume that vertically and horizontally we can move the filter a^{out} and b^{out} times, respectively.

$$a^{\text{out}} = \left\lfloor \frac{a^{\text{in}} - h}{s} \right\rfloor + 1, \quad b^{\text{out}} = \left\lfloor \frac{b^{\text{in}} - h}{s} \right\rfloor + 1$$

(5)
Matrix Operations I

For efficient implementations, we should conduct convolutional operations by matrix-matrix and matrix-vector operations.

We will go back to this issue later.
Let’s collect images of all channels as the input

$$Z^{in,i} = \begin{bmatrix}
 z_{1,1,1}^i & z_{2,1,1}^i & \cdots & z_{a^{in},b^{in},1}^i \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{1,1,d^{in}}^i & z_{2,1,d^{in}}^i & \cdots & z_{a^{in},b^{in},d^{in}}^i \\
\end{bmatrix} \in \mathbb{R}^{d^{in} \times a^{in} \times b^{in}}.$$
Matrix Operations III

Let all filters

$$W = \begin{bmatrix}
 w_{1,1,1} & w_{2,1,1} & \cdots & w_{h,h,d_{\text{in}}} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{d_{\text{out}},1,1} & w_{d_{\text{out}},2,1} & \cdots & w_{d_{\text{out}},h,h,d_{\text{in}}}
\end{bmatrix}
\in \mathbb{R}^{d_{\text{out}} \times hhd_{\text{in}}}
$$

be variables (parameters) of the current layer.
Usually a bias term is considered

\[b = \begin{bmatrix} b_1 \\ \vdots \\ b_{d_{\text{out}}} \end{bmatrix} \in \mathbb{R}^{d_{\text{out}} \times 1} \]

Operations at a layer

\[S_{\text{out},i}^{\text{out},i} = W \phi(Z_{\text{in},i}^{\text{in},i}) + b_1^{T} a_{\text{out}} b_{\text{out}} \in \mathbb{R}^{d_{\text{out}} \times a_{\text{out}} b_{\text{out}}} \]

(6)
where

\[1_{a_{\text{out}} b_{\text{out}}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^{a_{\text{out}} b_{\text{out}} \times 1}. \]

- \(\phi(Z^{m,i}) \) collects all sub-images in \(Z^{m,i} \) into a matrix.
Matrix Operations VI

Specifically,

$$
\phi(Z^{in,i}) = \\
\begin{bmatrix}
 z_{1,1,1}^i & z_{1+s,1,1}^i \\
 z_{2,1,1}^i & z_{2+s,1,1}^i \\
 \vdots & \vdots & \cdots \\
 z_{h,h,1}^i & z_{h+s,h,1}^i \\
 \vdots & \vdots & \\
 z_{h,h,d^{in}}^i & z_{h+s,h,d^{in}}^i \\
\end{bmatrix} \\
\in \mathbb{R}^{hhd^{in} \times a^{out} b^{out}}
$$
Next, an activation function scales each element of $S_{\text{out},i}$ to obtain the output matrix $Z_{\text{out},i}$.

$$Z_{\text{out},i} = \sigma(S_{\text{out},i}) \in \mathbb{R}^{d_{\text{out}} \times a_{\text{out}} b_{\text{out}}}.$$ (7)

For CNN, commonly the following RELU activation function

$$\sigma(x) = \max(x, 0)$$ (8)

is used (reasons?)

Later we need that $\sigma(x)$ is differentiable, but the RELU function is not.
Past works such as Krizhevsky et al. (2012) assume

\[
\sigma'(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{otherwise} \end{cases}
\]
The Function $\phi(Z_{\text{in},i})$

- In the matrix-matrix product

$$W\phi(Z_{\text{in},i})$$

each element is the inner product between a filter and a sub-image.

- We need to represent $\phi(Z_{\text{in},i})$ in an explicit form.

- This is important for subsequent calculation.

- Clearly ϕ is a linear mapping, so there exists a 0/1 matrix P^m_ϕ such that

$$\phi(Z_{\text{in},i}) \equiv \text{mat} \left(P_\phi \text{vec}(Z_{\text{in},i}) \right)_{\text{hhd} \times \text{a} \times \text{b} \times \text{out}}, \forall i, \quad (9)$$
The Function $\phi(Z_{\text{in}},i)$ II

- $\text{vec}(M)$: all M's columns concatenated to a vector \mathbf{v}
 \[\text{vec}(M) = \begin{bmatrix} M_{:,1} \\ \vdots \\ M_{:,b} \end{bmatrix} \in \mathbb{R}^{ab \times 1} \text{, where } M \in \mathbb{R}^{a \times b} \]

- $\text{mat}(\mathbf{v})$ is the inverse of $\text{vec}(M)$
 \[\text{mat}(\mathbf{v})_{a \times b} = \begin{bmatrix} v_1 & v_{(b-1)a+1} \\ \vdots & \vdots \\ v_a & v_{ba} \end{bmatrix} \in \mathbb{R}^{a \times b}, \quad (10) \]
The Function $\phi(Z_{\text{in}}, i)$

where

$$v \in \mathbb{R}^{ab \times 1}.$$

- P_ϕ is a huge matrix:

$$P_\phi \in \mathbb{R}^{hhd_{\text{in}} \times d_{\text{out}} \times a_{\text{out}} \times b_{\text{out}}}$$

and

$$\phi : \mathbb{R}^{d_{\text{in}} \times a_{\text{in}} \times b_{\text{in}}} \rightarrow \mathbb{R}^{hhd_{\text{in}} \times a_{\text{out}} \times b_{\text{out}}}$$

- Later we will check implementation details
- Past works using the form (9) include, for example, Vedaldi and Lenc (2015)
Optimization Problem I

- We collect all weights to a vector variable θ.

$$
\theta = \begin{bmatrix}
\text{vec}(W^1) \\
b^1 \\
\vdots \\
\text{vec}(W^L) \\
b^L
\end{bmatrix} \in \mathbb{R}^n, \quad n : \text{total \# variables}
$$

- The output of the last layer L is a vector $z^{L+1,i}(\theta)$.
- Consider any loss function such as the squared loss

$$
\xi_i(\theta) = \|z^{L+1,i}(\theta) - y^i\|^2.
$$
The optimization problem is

$$\min_{\theta} f(\theta),$$

where

$$f(\theta) = \frac{1}{2C} \theta^T \theta + \frac{1}{l} \sum_{i=1}^l \xi(z^{L+1,i}(\theta); y^i, Z^{1,i})$$

C: regularization parameter.

The formulation is almost the same as that for fully connected networks.
Optimization Problem III

- Note that we divide the sum of training losses by the number of training data.

Thus the second term becomes the average training loss.

- With the optimization problem, there is still a long way to do a real implementation.

- Further, CNN involves additional operations in practice:
 - padding
 - pooling

- We will explain them.
Zero Padding I

- To better control the size of the output image, before the convolutional operation we may enlarge the input image to have zero values around the border.
- This technique is called zero-padding in CNN training.
- An illustration:
Zero Padding II

An input image

\[p \]

\[
\begin{pmatrix}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\end{pmatrix}
\]
Zero Padding III

- The size of the new image is changed from $a^{\text{in}} \times b^{\text{in}}$ to $(a^{\text{in}} + 2p) \times (b^{\text{in}} + 2p)$, where p is specified by users.
- The operation can be treated as a layer of mapping an input $Z^{\text{in},i}$ to an output $Z^{\text{out},i}$.
- Let $d^{\text{out}} = d^{\text{in}}$.
There exists a $0/1$ matrix

$$P_{\text{pad}} \in \mathbb{R}^{d_{\text{out}} a_{\text{out}} b_{\text{out}} \times d_{\text{in}} a_{\text{in}} b_{\text{in}}}$$

so that the padding operation can be represented by

$$Z^{\text{out}, i} \equiv \text{mat}(P_{\text{pad}} \text{vec}(Z^{\text{in}, i}))_{d_{\text{out}} \times a_{\text{out}} b_{\text{out}}}.$$ \hspace{1cm} (11)

Implementation details will be discussed later
To reduce the computational cost, a dimension reduction is often applied by a pooling step after convolutional operations.

Usually we consider an operation that can (approximately) extract rotational or translational invariance features.

Examples: average pooling, max pooling, and stochastic pooling,

Let’s consider max pooling as an illustration
An example:

image A
\[
\begin{bmatrix}
2 & 3 & 6 & 8 \\
5 & 4 & 9 & 7 \\
1 & 2 & 6 & 0 \\
4 & 3 & 2 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
5 & 9 \\
4 & 6
\end{bmatrix}
\]

image B
\[
\begin{bmatrix}
3 & 2 & 3 & 6 \\
4 & 5 & 4 & 9 \\
2 & 1 & 2 & 6 \\
3 & 4 & 3 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
5 & 9 \\
4 & 6
\end{bmatrix}
\]
B is derived by shifting A by 1 pixel in the horizontal direction.

We split two images into four 2×2 sub-images and choose the max value from every sub-image.

In each sub-image because only some elements are changed, the maximal value is likely the same or similar.

This is called translational invariance.

For our example the two output images from A and B are the same.
Pooling IV

- For mathematical representation, we consider the operation as a layer of mapping an input $Z_{\text{in},i}^{\text{in}}$ to an output $Z_{\text{out},i}^{\text{out}}$.

- In practice pooling is considered as an operation at the end of the convolutional layer.

- We partition every channel of $Z_{\text{in},i}^{\text{in}}$ into non-overlapping sub-regions by $h \times h$ filters with the stride $s = h$.

- Because of the disjoint sub-regions, the stride s for sliding the filters is equal to h.
Pooling V

- This partition step is a special case of how we generate sub-images in convolutional operations.
- By the same definition as (9) we can generate the matrix

$$\phi(Z^{in,i}) = \text{mat}(P_\phi \text{vec}(Z^{in,i}))_{hh \times d^{out} a^{out} b^{out}},$$

(12)

where

$$a^{out} = \left[\frac{a^{in}}{h} \right], \quad b^{out} = \left[\frac{b^{in}}{h} \right], \quad d^{out} = d^{in}.$$

(13)
Note that here we consider $hh \times d^{\text{out}} a^{\text{out}} b^{\text{out}}$ rather than $hhd^{\text{out}} \times a^{\text{out}} b^{\text{out}}$ because we can then do a max operation on each column.

To select the largest element of each sub-region, there exists a matrix

$$M^i \in R^{d^{\text{out}} a^{\text{out}} b^{\text{out}} \times hhd^{\text{out}} a^{\text{out}} b^{\text{out}}}$$

so that each row of M^i selects a single element from $\text{vec}(\phi(Z^{\text{in},i}))$.
Therefore,

\[Z_{out,i} = \text{mat}(M^i \text{vec}(\phi(Z_{in,i})))_{d_{out} \times a_{out} b_{out}}. \quad (14) \]

A comparison with (6) shows that M^i is in a similar role to the weight matrix W though M^i is a constant.

By combining (12) and (14), we have

\[Z_{out,i} = \text{mat}(P_{pool}^i \text{vec}(Z_{in,i}))_{d_{out} \times a_{out} b_{out}}, \quad (15) \]

where

\[P_{pool}^i = M^i P_\phi \in \mathbb{R}^{d_{out} a_{out} b_{out} \times d_{in} a_{in} b_{in}}. \quad (16) \]
Pooling VIII
Summary of a Convolutional Layer I

- For implementation, padding and pooling are (optional) part of the convolutional layers.
- We discuss details of considering all operations together.
- The whole convolutional layer involves the following procedure:

\[
Z^{m,i} \rightarrow \text{padding by (11)} \rightarrow \text{convolutional operations by (6), (7)} \rightarrow \text{pooling by (15)} \rightarrow Z^{m+1,i}, \tag{17}
\]
Summary of a Convolutional Layer II

where $Z^{m,i}$ and $Z^{m+1,i}$ are input and output of the mth layer, respectively.

- Let the following symbols denote image sizes at different stages of the convolutional layer.

 \[
 a^m, \ b^m : \text{size in the beginning} \\
 a_{\text{pad}}^m, \ b_{\text{pad}}^m : \text{size after padding} \\
 a_{\text{conv}}^m, \ b_{\text{conv}}^m : \text{size after convolution}.
 \]

- The following table indicates how these values are $a^{\text{in}}, \ b^{\text{in}}, d^{\text{in}}$ and $a^{\text{out}}, b^{\text{out}}, d^{\text{out}}$ at different stages.
Summary of a Convolutional Layer III

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>$Z^{m,i}$</td>
<td>pad($Z^{m,i}$)</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>pad($Z^{m,i}$)</td>
<td>$S^{m,i}$</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>$S^{m,i}$</td>
<td>$\sigma(S^{m,i})$</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>$\sigma(S^{m,i})$</td>
<td>$Z^{m+1,i}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padding: (11)</td>
<td>a^{in}, b^{in}, d^{in}</td>
<td>$a^{out}, b^{out}, d^{out}$</td>
</tr>
<tr>
<td>Convolution: (6)</td>
<td>a^{m}, b^{m}, d^{m}</td>
<td>a^{pad}, b^{pad}, d^{m}</td>
</tr>
<tr>
<td>Convolution: (7)</td>
<td>$a^{m}{pad}, b^{m}{pad}, d^{m}$</td>
<td>$a^{conv}, b^{conv}, d^{m+1}$</td>
</tr>
<tr>
<td>Pooling: (15)</td>
<td>$a^{m}{conv}, b^{m}{conv}, d^{m+1}$</td>
<td>$a^{m+1}, b^{m+1}, d^{m+1}$</td>
</tr>
</tbody>
</table>
Summary of a Convolutional Layer IV

Let the filter size, mapping matrices and weight matrices at the \(m \)th layer be

\[
h^m, P^m_{\text{pad}}, P^m_{\phi}, P^m_{\text{pool}}, W^m, b^m.
\]

From (11), (6), (7), (15), all operations can be summarized as

\[
S^{m,i} = W^m \text{mat}(P^m_{\phi} P^m_{\text{pad}} \text{vec}(Z^{m,i})) h^m h^m d^m \times a^m_{\text{conv}} b^m_{\text{conv}} + b^m 1^T a_{\text{conv}} b_{\text{conv}}
\]

\[
Z^{m+1,i} = \text{mat}(P^m_{\text{pool}} \text{vec}(\sigma(S^{m,i}))) d^{m+1} \times a^{m+1} b^{m+1},
\]

(18)
Fully-Connected Layer I

- Input vector of the first fully-connected layer:

\[z^{m,i} = \text{vec}(Z^{m,i}), \quad i = 1, \ldots, l, \quad m = L^c + 1. \]

- In each of the fully-connected layers \((L^c < m \leq L)\), we consider weight matrix and bias vector between layers \(m\) and \(m + 1\).
Fully-Connected Layer II

- **Weight matrix:**

\[
W^m = \begin{bmatrix}
w_{11}^m & w_{12}^m & \cdots & w_{1n_m}^m \\
w_{21}^m & w_{22}^m & \cdots & w_{2n_m}^m \\
\vdots & \vdots & \ddots & \vdots \\
w_{n_{m+1}}^m & w_{n_{m+1}2}^m & \cdots & w_{n_{m+1}n_m}^m \\
\end{bmatrix}_{n_{m+1} \times n_m}
\]

(19)

- **Bias vector**

\[
b^m = \begin{bmatrix}
b_1^m \\
b_2^m \\
\vdots \\
b_{n_{m+1}}^m \\
\end{bmatrix}_{n_{m+1} \times 1}
\]
Here n_m and n_{m+1} are the numbers of nodes in layers m and $m + 1$, respectively.

- If $z^{m,i} \in \mathbb{R}^{n_m}$ is the input vector, the following operations are applied to generate the output vector $z^{m+1,i} \in \mathbb{R}^{n_{m+1}}$.

\begin{align*}
 s^{m,i} &= W^m z^{m,i} + b^m, \\
 z^{m+1,i}_j &= \sigma(s^{m,i}_j), \quad j = 1, \ldots, n_{m+1}.
\end{align*}
Outline

1. Regularized linear classification
2. Optimization problem for fully-connected networks
3. Optimization problem for convolutional neural networks (CNN)
4. Discussion
Challenges in NN Optimization

- The objective function is non-convex. It may have many local minima.
- Traditionally global optimization is much more difficult than local minimization.
- The problem structure is very complicated.
- In this course we will have first-hand experiences on these difficulties.
Formulation I

- We have written all CNN operations in matrix/vector forms.
- This is useful in deriving the gradient.
- Are our representation symbols good enough? Can we do better?
- You can say that this is only a matter of notation, but given the wide use of CNN, a good formulation can be extremely useful.

