Newton Methods for Neural Networks: Part 1

Chih-Jen Lin
National Taiwan University

Last updated: May 9, 2019
Outline

1. Introduction
2. Newton method
3. Hessian and Gaussian-Newton Matrices
Outline

1. Introduction
2. Newton method
3. Hessian and Gaussian-Newton Matrices
Optimization Methods Other than Stochastic Gradient

- We have explained why stochastic gradient is popular for deep learning.
- The same reasons may explain why other methods are not suitable for deep learning.
- But we also notice that from the simplest SG to what people are using many modifications were made.
- Can we extend other optimization methods to be suitable for deep learning?
Outline

1. Introduction
2. Newton method
3. Hessian and Gaussian-Newton Matrices
Newton Method

- Consider an optimization problem
 \[\min_{\theta} f(\theta) \]

- Newton method solves the 2nd-order approximation to get a direction \(d \)
 \[\min_d \nabla f(\theta)^T d + \frac{1}{2} d^T \nabla^2 f(\theta) d \] (1)

- If \(f(\theta) \) isn’t strictly convex, (1) may not have a unique solution
Newton Method (Cont’d)

- We may use a positive-definite G to approximate $\nabla^2 f(\theta)$.
- Then (1) can be solved by

$$G d = -\nabla f(\theta)$$

- The resulting direction is a descent one

$$-\nabla f(\theta) d = -\nabla f(\theta)^T G^{-1} \nabla f(\theta) < 0$$
Newton Method (Cont’d)

The procedure:

\[\text{while stopping condition not satisfied do} \]
Let \(G \) be \(\nabla^2 f(\theta) \) or its approximation
Exactly or approximately solve

\[Gd = -\nabla f(\theta) \]

Find a suitable step size \(\alpha \)
Update

\[\theta \leftarrow \theta + \alpha d. \]

end while
Step Size \(\alpha \)

- Selection of the step size \(\alpha \): usually two types of approaches
 - Line search
 - Trust region (or its predecessor: Levenberg-Marquardt algorithm)
- If using line search, details are similar to what we had for gradient descent

\[
f(\theta + \alpha d) < f(\theta) + \nu \nabla f(\theta)^T (\alpha d)
\]
Newton versus Gradient Descent I

- We know they use second-order and first-order information respectively.
- What are their special properties?
- It is known that using higher order information leads to faster final local convergence.
Newton versus Gradient Descent II

- An illustration (modified from Tsai et al. (2014)) presented earlier

Newton method

- **Slow final convergence**
- **Fast final convergence**

Chih-Jen Lin (National Taiwan Univ.)
Newton versus Gradient Descent III

- But the question is for machine learning why we need fast local convergence?
- The answer is no
- However, higher-order methods tend to be more robust
- Their behavior may be more consistent across easy and difficult problems
- It’s known that stochastic gradient is sometimes sensitive to parameters
- Thus what we hope to try here is if we can have a more robust optimization method
The Newton linear system

\[Gd = -\nabla f(\theta) \]

can be large.

\[G \in \mathbb{R}^{n \times n}, \]

where \(n \) is the total number of variables.

Thus \(G \) is often too large to be stored.
Difficulties of Newton for NN II

- Even if we can store G, calculating
 \[d = -G^{-1}\nabla f(\theta) \]
 is usually very expensive
- Thus a direct use of Newton for deep learning is hopeless
Existing Works Trying to Make Newton Practical

- Many works tried to address this issue
- Their approaches significantly vary
- I roughly categorize them to two groups
 - Hessian-free (Martens, 2010; Martens and Sutskever, 2012; Wang et al., 2018b; Henriques et al., 2018)
 - Hessian approximation (Martens and Grosse, 2015; Botev et al., 2017; Zhang et al., 2017)

In particular, doaginal approximation
Existing Works Trying to Make Newton Practical II

- Other works haven’t been checked: (Osawa et al., 2019)
- Other second-order works focusing on other types of networks: (Wang et al., 2018a; Chen et al., 2019)
- How about earlier works (Wilamowski et al., 2007)
- There are also comparisons (Chen and Hsieh, 2018)
- With the many possibilities it is difficult to reach conclusions
- We decide to first check the robustness of standard Newton methods on small-scale data
Existing Works Trying to Make Newton Practical III

- Then we don’t need approximations
- See the project description for details
Outline

1. Introduction
2. Newton method
3. Hessian and Gaussian-Newton Matrices
For checking techniques to address the difficulty of storing or inverting the Hessian, let’s derive the mathematical form...
Hessian Matrix I

For CNN, the gradient of $f(\theta)$ is

$$\nabla f(\theta) = \frac{1}{C} \theta + \frac{1}{l} \sum_{i=1}^{l} (J^i)^T \nabla_{z^{L+1,i}} \xi(z^{L+1,i} ; y^i, Z^{1,i}),$$

(3)

where

$$J^i = \begin{bmatrix}
\frac{\partial z_1^{L+1,i}}{\partial \theta_1} & \cdots & \frac{\partial z_1^{L+1,i}}{\partial \theta_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial z_{n_{L+1}}^{L+1,i}}{\partial \theta_1} & \cdots & \frac{\partial z_{n_{L+1}}^{L+1,i}}{\partial \theta_n}
\end{bmatrix}_{n_{L+1} \times n}, \quad i = 1, \ldots, l,$$

(4)
Hessian Matrix II

is the Jacobian of $z^{L+1,i}(\theta)$.

The Hessian matrix of $f(\theta)$ is

$$\nabla^2 f(\theta) = \frac{1}{C} \mathcal{I} + \frac{1}{l} \sum_{i=1}^{l} (J^i)^T B^i J^i$$

$$+ \frac{1}{l} \sum_{i=1}^{l} \sum_{j=1}^{n_L} \frac{\partial \xi(z^{L+1,i}; y^i, Z^{1,i})}{\partial z_j^{L+1,i}} \begin{bmatrix} \frac{\partial^2 z_j^{L+1,i}}{\partial \theta_1 \partial \theta_1} & \cdots & \frac{\partial^2 z_j^{L+1,i}}{\partial \theta_1 \partial \theta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 z_j^{L+1,i}}{\partial \theta_n \partial \theta_1} & \cdots & \frac{\partial^2 z_j^{L+1,i}}{\partial \theta_n \partial \theta_n} \end{bmatrix}.$$
where \mathcal{I} is the identity matrix and B^i is the Hessian of $\xi(\cdot)$ with respect to $z^{L+1,i}$:

$$B^i = \nabla^2_{z^{L+1,i}, z^{L+1,i}} \xi(z^{L+1,i}, y^i, Z^{1,i})$$

- More precisely,

$$B^i_{ts} = \frac{\partial^2 \xi(z^{L+1,i}; y^i, Z^{1,i})}{\partial z_t^{L+1,i} \partial z_s^{L+1,i}}, \quad t, s = 1, \ldots, n_{L+1}. \quad (5)$$

- Usually B^i is very simple. For example,
For example, if the squared loss is used,

$$\xi(z^{L+1,i}; y^i) = \|z^{L+1,i} - y^i\|^2.$$

then

$$B^i = \begin{bmatrix} 2 & \cdots \\ \cdots & 2 \end{bmatrix}$$

The last term of $\nabla^2 f(\theta)$ isn’t positive semi-definite.
The Jacobian matrix of $z^{L+1,i}(\theta) \in \mathbb{R}^{n_{L+1}}$ is

$$J^i = \begin{bmatrix}
\frac{\partial z_{1}^{L+1,i}}{\partial \theta_1} & \cdots & \frac{\partial z_{1}^{L+1,i}}{\partial \theta_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial z_{n_L}^{L+1,i}}{\partial \theta_1} & \cdots & \frac{\partial z_{n_L}^{L+1,i}}{\partial \theta_n}
\end{bmatrix} \in \mathbb{R}^{n_{L+1} \times n}, \ i = 1, \ldots, l.$$

- n_{L+1}: # of neurons in the output layer
- n: number of total variables
- $n_{L+1} \times n$ can be large
The Hessian matrix $\nabla^2 f(\theta)$ is now not positive definite.

We may need a positive definite approximation.

This is a deep research issue.

Many existing Newton methods for NN has considered the Gauss-Newton matrix (Schraudolph, 2002)

$$G = \frac{1}{C} \mathcal{I} + \frac{1}{l} \sum_{i=1}^{l} (J^i)^T B^i J^i$$

by removing the last term in $\nabla^2 f(\theta)$.
The Gauss-Newton matrix is positive definite if B^i is positive semi-definite.

This can be achieved if we use a convex loss function in terms of $z^{L+1,i}(\theta)$.

For example, if the squared loss is used,

$$
\xi(z^{L+1,i}; y^i) = \|z^{L+1,i} - y^i\|^2.
$$

Then

$$
B^i = \begin{bmatrix}
2 \\
\vdots \\
2
\end{bmatrix}
$$
Hessian and Gaussian-Newton Matrices

Gauss-Newton Matrix III

is a positive definite matrix

We then solve

\[Gd = -\nabla f(\theta) \]
References

References II

