Optimized BLAS: an Example by Using Block Algorithms I

- Let's test the matrix multiplication
- A C program:
\#define n 3000 double $a[n][n], b[n][n], c[n][n] ;$
int main()
\{

$$
\begin{aligned}
& \text { int } i, j, k ; \\
& \text { for }(i=0 ; i<n ; i++)
\end{aligned}
$$

Optimized BLAS: an Example by Using Block Algorithms II

$$
\begin{aligned}
& \text { for }(j=0 ; j<n ; j++)\{ \\
& \quad a[i][j]=1 ; b[i][j]=1 \text {; } \\
& \}
\end{aligned}
$$

for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)

$$
\begin{aligned}
& \text { for } \quad(j=0 ; j<n ; j++) \text { \{ } \\
& \quad \text { c }[i][j]=0 ; \\
& \quad \text { for }(k=0 ; k<n ; k++) \\
& \quad c[i][j]+=a[i][k] * b[k][j] ;
\end{aligned}
$$

\}

Optimized BLAS: an Example by Using Block Algorithms III

\}

- Results:
cjlin@linux1:~\$ gcc -03 mat.c; time ./a.out real 1m24.909s
user 1m24.534s
sys 0m0.193s
- We do the same task on Matlab
- To remove the effect of multi-threading, use matlab -singleCompThread

Optimized BLAS: an Example by Using Block Algorithms IV

- Results:
cjlin@linux1:~\$ matlab -singleCompThread
>> n = 3000;
$\gg \mathrm{A}=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{B}=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ;$
>> tic; C = A*B; toc
Elapsed time is 1.708523 seconds.
- An issue about timing is elapsed time versus CPU time

Optimized BLAS: an Example by Using Block Algorithms V

>> $A=\operatorname{randn}(n, n) ; B=\operatorname{randn}(n, n) ;$
>> $\mathrm{t}=$ cputime; $\mathrm{C}=\mathrm{A} * \mathrm{~B}$; $\mathrm{t}=$ cputime -t
$\mathrm{t}=$

$$
1.3000
$$

They are similar if no other jobs are running on this machine.

- Results of using multi-threading (the default of MATLAB)

Optimized BLAS: an Example by Using Block Algorithms VI

cjlin@linux1:~\$ matlab
>> n = 3000;
>> $\mathrm{A}=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{B}=\operatorname{randn}(\mathrm{n}, \mathrm{n})$;
>> tic; C = A*B; toc
Elapsed time is 0.426942 seconds.
>> A $=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{B}=\operatorname{randn}(\mathrm{n}, \mathrm{n})$;
>> $\mathrm{t}=$ cputime; $\mathrm{C}=\mathrm{A} * \mathrm{~B}$; $\mathrm{t}=$ cputime -t
$\mathrm{t}=$

Optimized BLAS: an Example by Using Block Algorithms VII

5.1200

- We see that under the same setting of using a single thread, Matlab is much faster than a code written by ourselves.
- Why ?
- Optimized BLAS: an implementation that takes the advantage of memory hierarchies
- Data locality is exploited
- Use the highest level of memory as possible

Optimized BLAS: an Example by Using Block Algorithms VIII

- Block algorithms: a way to transfer sub-matrices between different levels of storage
They localize operations to achieve good performance

Memory Hierarchy I

CPU \downarrow

Registers

Cache

Main Memory
\downarrow
Secondary storage (Disk)

- \uparrow : increasing in speed
- \downarrow : increasing in capacity

Memory Management I

- Our examples are based on the paper (McKellar and Coffman, 1969) and some existing teaching materials
- We assume that the computer has only two layers of memory
- main memory
- secondary memory
- Page fault: an operand is not available in main memory and must be transported from secondary memory

Memory Management II

- When moving things between layers, due to initialization cost, we move a continuous segment of data (called a page) instead of a single value
- Usually if a page is moved to the main memory, it overwrites page least recently used
- An example: $C=A B+C, n=1,024$
- Assumption: a page 65,536 doubles $=64$ columns
- 16 pages for each matrix

48 pages for three matrices

Memory Management III

- Assumption: available memory 16 pages, matrices access: column oriented

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

column oriented: 1324
row oriented: 1234

- access each row of A : 16 page faults, $1024 / 64=16$
- Approach 1 :

Memory Management IV

```
for \(\mathrm{i}=1: \mathrm{n}\)
        for \(j=1: n\)
        for \(k=1\) : \(n\)
        \(c(i, j)=a(i, k) * b(k, j)+c(i, j) ;\)
        end
        end
end
```

We use a matlab-like syntax here

- At each (i, j): each row a(i, 1:n) causes 16 page faults

Memory Management V

Total: $1024^{2} \times 16$ page faults

- at least 16 million page faults
- Approach 2:
for $j=1: n$
for $k=1$: n
for $\mathrm{i}=1$: n
$c(i, j)=a(i, k) * b(k, j)+c(i, j) ;$
end
end
end

Memory Management VI

- For each j, access all columns of A
A needs 16 pages, but B and C take spaces as well So A must be read for every j
- For each $j, 16$ page faults for A
1024×16 page faults
$C, B: 16$ page faults
- What if we implement this approach in C?
- Code:

Memory Management VII

\#define n 3000 double $a[n][n], b[n][n], c[n][n]$;
int main()
\{
int i, j, k;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
for ($j=0 ; j<n ; j++$) \{
a[i][j]=1; b[i][j]=1;
c[i][j]=0;
\}

Memory Management VIII

$$
\begin{aligned}
& \text { for }(j=0 ; j<n ; j++) \text { \{ } \\
& \text { for }(k=0 ; k<n ; k++) \\
& \text { for }(i=0 ; i<n ; i++) \\
& \quad c[i][j]+=a[i][k] * b[k][j] ;
\end{aligned}
$$

\}
\}

- Results:

Memory Management IX

cjlin@linux1:~\$ gcc -03 mat1.c; time ./a.out real 4m20.247s
user 4m19.761s
sys 0m0.154s

- Why is it even slower?
- C is row-oriented instead of column-oriented
- Thus we had implemented Approach 2 first and then Approach 1

