Let’s test the matrix multiplication

A C program:

```c
#define n 3000
double a[n][n], b[n][n], c[n][n];

int main()
{
    int i, j, k;
    for (i=0; i<n; i++)
```
Optimized BLAS: an Example by Using Block Algorithms II

for (j=0; j<n; j++) {
 a[i][j]=1; b[i][j]=1;
}

for (i=0; i<n; i++)
for (j=0; j<n; j++) {
 c[i][j]=0;
 for (k=0; k<n; k++)
 c[i][j] += a[i][k]*b[k][j];
}
Results:

cjlin@linux1:~$ gcc -O3 mat.c; time ./a.out
real 1m24.909s
user 1m24.534s
sys 0m0.193s

We do the same task on Matlab

To remove the effect of multi-threading, use
matlab -singleCompThread
Results:

```
cjlin@linux1:~$ matlab -singleCompThread
>> n = 3000;
>> A = randn(n,n); B = randn(n,n);
>> tic; C = A*B; toc
Elapsed time is 1.708523 seconds.
```

An issue about timing is elapsed time versus CPU time
Optimized BLAS: an Example by Using Block Algorithms V

```matlab
>> A = randn(n,n); B = randn(n,n);
>> t = cputime; C = A*B; t = cputime -t

 t =

    1.3000

They are similar if no other jobs are running on this machine.

- Results of using multi-threading (the default of MATLAB)
cjlin@linux1:~$ matlab
>> n = 3000;
>> A = randn(n,n); B = randn(n,n);
>> tic; C = A*B; toc
Elapsed time is 0.426942 seconds.
>> A = randn(n,n); B = randn(n,n);
>> t = cputime; C = A*B; t = cputime -t

t =
5.1200

- We see that under the same setting of using a single thread, Matlab is much faster than a code written by ourselves.

- Why?

- Optimized BLAS: an implementation that takes the advantage of memory hierarchies

- Data locality is exploited

- Use the highest level of memory as possible
Optimized BLAS: an Example by Using Block Algorithms VIII

- Block algorithms: a way to transfer sub-matrices between different levels of storage
  They localize operations to achieve good performance
Memory Hierarchy I

- CPU
  - Registers
  - Cache
    - Main Memory
      - Secondary storage (Disk)
↑: increasing in speed
↓: increasing in capacity
Our examples are based on the paper (McKellar and Coffman, 1969) and some existing teaching materials.

We assume that the computer has only two layers of memory:
- main memory
- secondary memory

Page fault: an operand is not available in main memory and must be transported from secondary memory.
When moving things between layers, due to initialization cost, we move a continuous segment of data (called a page) instead of a single value. Usually if a page is moved to the main memory, it overwrites page least recently used.

An example: \( C = AB + C, \ n = 1,024 \)

Assumption: a page 65,536 doubles = 64 columns.

16 pages for each matrix
48 pages for three matrices
Assumption: available memory 16 pages, matrices access: column oriented

\[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

column oriented: 1 3 2 4
row oriented: 1 2 3 4

access each row of \( A \): 16 page faults, \( \frac{1024}{64} = 16 \)

Approach 1:
for i =1:n
    for j=1:n
        for k=1:n
            c(i,j) = a(i,k)*b(k,j)+c(i,j);
        end
    end
end

We use a matlab-like syntax here

- At each (i,j): each row a(i, 1:n) causes 16 page faults
Total: $1024^2 \times 16$ page faults
- at least 16 million page faults
- Approach 2:
  ```plaintext
 for j=1:n
 for k=1:n
 for i=1:n
 c(i,j) = a(i,k)*b(k,j)+c(i,j);
 end
 end
 end
  ```
For each $j$, access all columns of $A$
$A$ needs 16 pages, but $B$ and $C$ take spaces as well
So $A$ must be read for every $j$
For each $j$, 16 page faults for $A$
$1024 \times 16$ page faults
$C, B : 16$ page faults
What if we implement this approach in C?
Code:
#define n 3000
double a[n][n], b[n][n], c[n][n];

int main()
{
    int i, j, k;
    for (i=0;i<n;i++)
        for (j=0;j<n;j++)
        {
            a[i][j]=1; b[i][j]=1;
            c[i][j]=0;
        }
}
for (j=0; j<n; j++) {
    for (k=0; k<n; k++)
        for (i=0; i<n; i++)
            c[i][j] += a[i][k]*b[k][j];
}

Results:
cjlin@linux1:~$ gcc -O3 mat1.c; time ./a.out
real 4m20.247s
user 4m19.761s
sys 0m0.154s

- Why is it even slower?
- C is row-oriented instead of column-oriented
- Thus we had implemented Approach 2 first and then Approach 1