
Numerical Methods 2023 — Midterm 1

Solutions

Problem 1 (20 pts). In our course, we have already learned double and single precision floating-point
formats. Nevertheless, there exists another useful floating-point format that uses only 2 Bytes on the
storage:

sign exponent significand
1 bit 5 bits 10 bits

which is called half precision floating-point, and this format has the rules:

±0, exponent = 000002 and significand = 0

±2−14 × 0.significand2, exponent = 000002 and significand 6= 0

±2exponent−15 × 1.significand2, 111112 > exponent > 000002

±∞, exponent = 111112 and significand = 0

NaN, exponent = 111112 and significand 6= 0

(1)

We further consider rounding even in this problem.

(a) (5 pts) What is the binary representation of the value

528.625

in half precision floating-point? Please show your the calculation in the answer.

(b) (5 pts) What is the rounding error of encoding

528.625

in half precision floating-point?

(c) (10 pts) What is the largest relative error in rounding a half precision floating-point number that
belongs to the interval [−10000, 10000]? Note that the de-normalized number should be considered,
so you need to consider the second and the third cases in (1).

Solution.

(a)

528.625

=512 + 16 + 0.5 + 0.125

=29 + 24 + 2−1 + 2−3

=(10 0001 0000.101)2

=29 × (1.0000 1000 0101)2 (2)
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Therefore, the significand part is rounding to

0000 1000 01 (3)

and the exponent part is
9 + 15 = 24 = 110002.

The binary representation of 528.625 in half precision floating-point is

0 11000 0000 1000 01.

(b) Let v be the value of encoding 528.625 in half precision floating-point. By (2) and (3), we can
calculate the error

528.625− v
=29 × ((1.0000 1000 0101)2 − (1.0000 1000 01)2)

=29 × (0.0000 0000 0001)2

=2−3 × (1.0)2

Hence, the rounding error is
2−3 = 0.125.

(c) By the formula of relative error ∣∣∣∣real value− rounding value

real value

∣∣∣∣ ,
let us discuss the relative error in two cases:

Case 1: 111112 > exponent > 000002. We have relative error as∣∣∣∣2k × (1.significand2 + rounding error)− 2k × 1.significand2

2k × (1.significand2 + rounding error)

∣∣∣∣
=

∣∣∣∣ rounding error

(1.significand2 + rounding error)

∣∣∣∣ .
Note that

rounding error < 2−10

because we have 10 digits for
significand2.

To get the largest relative error in this case, the significand must be as small as possible,
which is zero. Therefore, we can use the following optimization problem

max
x<2−10

x

1 + x
≡ max

x<2−10
1− 1

1 + x

to get the largest relative error, and the solution x∗ is

2−10 × (0.1111 . . .)2,

which implies the largest relative error is bounded by

1− 1

1 + 2−10

in this case.
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Case 2: exponent = 000002. Similarly, we have relative error as∣∣∣∣2−14 × (0.significand2 + rounding error)− 2−14 × 0.significand2

2−14 × (0.significand2 + rounding error)

∣∣∣∣
=

∣∣∣∣ rounding error

(0.significand2 + rounding error)

∣∣∣∣ .
When significand is equal to zero, the largest relative error is

rounding error

(0.0 + rounding error)
= 1

in this case.

By combining Case 1 and Case 2, we have the largest relative error as

max

(
1− 1

1 + 2−10
, 1

)
= 1.

Problem 2 (10 pts). Consider the following matrix

A =


9 3 18 27
3 17 10 21
18 10 62 72
27 21 72 100

 .
Show every step of performing Cholesky factorization on A with the outer product form. Hint: the
resulting L contains only integer values.

Solution.

Step 1: Calculate
√
α =
√

9 = 3, so that

L(1) =


3 0 0 0
1 1 0 0
6 0 1 0
9 0 0 1


in this step. Also, we calculate

B − v · vT√
α

=

17 10 21
10 62 72
21 72 100

−
1 6 9

6 36 54
9 54 81

 =

16 4 12
4 26 18
12 18 19

 .
Thus, we have

A(1) =


3 1 6 9
1 16 4 12
6 4 26 18
9 12 18 19

 .
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Step 2: Now we re-do the calculation on A(1), we have
√
α(1) =

√
16 = 4, and

L(2) =


3 0 0 0
1 4 0 0
6 1 1 0
9 3 0 1


in this step. Then, calculate

B(1) −
v(1) ·

(
v(1)
)T

√
α(1)

=

[
26 18
18 19

]
−
[
1 3
3 9

]
=

[
25 15
15 10

]
.

Therefore,

A(2) =


3 1 6 9
1 4 1 3
6 1 25 15
9 3 15 10

 .
Step 3: Similarly, we have

√
α(2) =

√
25 = 5, and

L(3) =


3 0 0 0
1 4 0 0
6 1 5 0
9 3 3 1


in this step. Furthermore,

B(2) −
v(2) ·

(
v(2)
)T

√
α(2)

=
[
10
]
−
[
9
]

=
[
1
]
.

Therefore,

A(3) =


3 1 6 9
1 4 1 3
6 1 5 3
9 3 3 1

 .
Step 4: In the final,

√
α(3) =

√
1 = 1, so that

L(4) =


3 0 0 0
1 4 0 0
6 1 5 0
9 3 3 1


is the same as L(3). Moreover, A(4) is also equal to A(3).

Problem 3 (30 pts). Consider the following matrix:

A =

 15 18 60
5 42 95
−35 −21 −119


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(a) (5 pts) In pivoted LU factorization, please give

P1,M1, P2,M2, U

such that
M2P2M1P1A = U.

Note that you should choose the pivot which has the largest absolute value. Hint: U has only integer
values.

(b) (5 pts) Following (a), what are the P and L such that PA = LU?

(c) (10 pts) In pivoted LU factorization, we have a general method that considers the pivot in both
rows and columns

PAQ = LU,

where Q is also a permutation matrix that can interchange the columns. To simplify the calculations,
the number of row and column interchange is limited to ONE when a pivot is determined, i.e., you
cannot pick both row interchange and column interchange. For example, the pivot of the (1, 1)
position is the largest absolute value element of the first row and the first column. If it is from the
first column, then

Q1 = I,

otherwise
P1 = I.

Follow the similar idea of (a), please give

P1, Q1,M1, P2, Q2,M2

and U so that
M2P2M1P1 · A ·Q1Q2 = U.

Note that you should choose the pivot which has the largest absolute value. If there are more than
two candidates of pivot, we choose the one that is the closest to the diagonal part. Note that U has
fraction numbers, so you want to be careful in doing the calculation.

(d) (5 pts) Following (c), please calculate P , Q and L such that

PAQ = LU.

(e) (5 pts) Following (d), solving the linear system

Ax = b

is equivalent to solve
P−1LUQ−1x = b.

Therefore, we can get the solution x∗ by the following steps.

(i) Solve Ly = Pb to get y∗, where y∗ = UQ−1x.

(ii) Solve Uz = y∗ to get z∗, where z∗ = Q−1x.

(iii) Solve Q−1x = z∗ to get x∗.
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Now, we have

b =

0
0
1

 .
Please solve

Ax = b

by the aforementioned steps.

Solution.

(a) Step 1: The pivot is −35, so we have

P1 =

0 0 1
0 1 0
1 0 0


such that

P1A =

−35 −21 −119
5 42 95
15 18 60

 .
Then, we can calculate

M1 =

 1 0 0
1/7 1 0
3/7 0 1

 ,
so that

M1P1A =

−35 −21 −119
0 39 78
0 9 9

 .
Step 2: The pivot is 39, so

P2 =

1 0 0
0 1 0
0 0 1


and P2M1P1A is still −35 −21 −119

0 39 78
0 9 9

 .
Thus, M2 is calculated by 1 0 0

0 1 0
0 −3/13 1

 ,
and

M2P2M1P1A =

−35 −21 −119
0 39 78
0 0 −9

 .
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(b) We have

P = P2P1 =

0 0 1
0 1 0
1 0 0


and

L =M−1
1 M−1

2

=

 1 0 0
−1/7 1 0
−3/7 0 1

1 0 0
0 1 0
0 3/13 1


=

 1 0 0
−1/7 1 0
−3/7 3/13 1


(c) Step 1: The pivot is 60, so

P1 =

1 0 0
0 1 0
0 0 1


and

Q1 =

0 0 1
0 1 0
1 0 0


such that

P1 · A ·Q1 =

 60 18 15
95 42 5
−119 −21 −35

 .
Thereby, we can calculate

M1 =

 1 0 0
−95/60 1 0
119/60 0 1


and

M1P1 · A ·Q1 =

60 18 15
0 27/2 −75/4
0 147/10 −21/4

 .
Step 2: Now the pivot is −75/4, so

P2 =

1 0 0
0 1 0
0 0 1


and

Q2 =

1 0 0
0 0 1
0 1 0


such that

P2M1P1 · A ·Q1Q2 =

60 15 18
0 −75/4 27/2
0 −21/4 147/10

 .
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Hence, we have

M2 =

1 0 0
0 1 0
0 −21/75 1


and then

M2P2M1P1 · A ·Q1Q2 =

60 15 18
0 −75/4 27/2
0 0 273/25

 .
(d) We have

P = P2P1 =

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

 =

1 0 0
0 1 0
0 0 1

 ,
Q = Q1Q2 =

0 0 1
0 1 0
1 0 0

1 0 0
0 0 1
0 1 0

 =

0 1 0
0 0 1
1 0 0


and

L = M−1
1 M−1

2

=

 1 0 0
95/60 1 0
−119/60 0 1

1 0 0
0 1 0
0 21/75 1


=

 1 0 0
95/60 1 0
−119/60 21/75 1

 .
(e) In step (i), we have to solve

Ly = Pb

⇒

 1 0 0
95/60 1 0
−119/60 21/75 1

y =

1 0 0
0 1 0
0 0 1

 b

⇒

 1 0 0
95/60 1 0
−119/60 21/75 1

y =

0
0
1

 ,
and the solution y∗ can be calculated as

y∗ =

0
0
1

 .
In step (ii), we have to solve

Uz = y∗

⇒

60 15 18
0 −75/4 27/2
0 0 273/25

 z =

0
0
1

 .
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The solution z∗ can be calculated as

z∗ =

−12/273
18/273
25/273

 .
In step (iii), we have to solve

Q−1x = z∗,

which implies

x = Qz∗ =

0 1 0
0 0 1
1 0 0

 z∗.

Thus,

x∗ =

 18/273
25/273
−12/273

 .
Problem 4 (25 pts). In our lecture slide “linear matrixcondition2.pdf”, we have defined the condition
of a matrix A to be ‖A‖‖A−1‖. In this problem, we explore the relation between the condition number
and the singular value decomposition.

Assume that we have a real, invertible, n × n matrix A. We say that the matrix A has a singular
value decomposition if there exists matrices U,Σ, V such that

A = UΣV T

where U, V are n× n orthogonal matrices satisfying UT = U−1, V T = V −1,

and Σ is an n× n diagonal matrix with Σii = σi > 0.

In this problem, let us use ui and vi to denote the ith column in U and V , respectively.

(a) (5 pts) Use the definition of matrix norm given in our lecture slide “linear matrixcondition1.pdf”
to show that for A we have

‖A‖2 = max
‖x‖2=1

∥∥ΣV Tx
∥∥
2
.

(b) (10 pts) Following subproblem (a), show that

max
‖x‖2=1

∥∥ΣV Tx
∥∥
2

= max
i
σi

to conclude that
‖A‖2 = max

i
σi.

Hint: One way to do the proof is by first showing that∥∥ΣV Tx
∥∥
2
≤ max

i
σi for all x satisfying ‖x‖2 = 1,

and then show that ∥∥ΣV Tx
∥∥
2

= max
i
σi for some x satisfying ‖x‖2 = 1.
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(c) (5 pts) Show that for the inverse of A we also have∥∥A−1∥∥
2

= max
i

1

σi
.

Then, conclude that the condition number of A induced by the norm ‖ · ‖2 is equivalent to

maxi σi
mini σi

.

(d) (5 pts) Recall from lecture slide “linear matrixcondition2.pdf” that when solving a linear system

Ax = b,

we have the inequality
‖δx‖2
‖x‖2

≤ ‖A‖2
∥∥A−1∥∥

2

‖δb‖2
‖b‖2

(4)

to quantify the relative change in the solution x when the input b is slightly purturbed.

Combining equation (4) with the conclusion in subproblem (c), we can obtain this inequality:

‖δx‖2 / ‖x‖2
‖δb‖2 / ‖b‖2

≤ maxi σi
mini σi

(5)

In this problem, we discuss the situation when the left hand side of (5) becomes equal to the right
hand side (i.e., when x becomes the most sensitive to purturbation in b). Let

imax = arg max
i

σi and imin = arg min
i

σi.

You need to show that

if b = c1uimax and δb = c2uimin
for some c1, c2 ∈ R

then the equality in (5) holds.

(This result means that, when b is parallel to the column vector in U corresponding to the largest
singular value and δb is parallel to that of the smallest singular value, the relative change in x is the
largest.)

Solution.

(a) By the definition of matrix norm, we have

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

∥∥UΣV Tx
∥∥
2
. (6)

Because U is orthogonal, we have

‖Uw‖2 =
√

(Uw)T (Uw) =
√
wTUTUw =

√
wTw = ‖w‖2 (7)

for any w ∈ Rn. Therefore, (6) can be simplified to

max
‖x‖2=1

∥∥ΣV Tx
∥∥
2
.
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(b) We show that
∥∥ΣV Tx

∥∥
2

have an upperbound maxi σi and the upperbound is attained by some
vector. To derive the upperbound, let

y = V Tx = V −1x.

Then, we can see that

max
‖x‖2=1

∥∥ΣV Tx
∥∥
2

= max
‖V y‖2=1

‖Σy‖2

= max
‖y‖2=1

‖Σy‖2 (for the same reason in (7))

= max
‖y‖2=1

√
σ2
1y

2
1 + . . .+ σ2

ny
2
n

≤ max
‖y‖2=1

[
(max

i
σi)
√
y21 + . . .+ y2n

]
= max
‖y‖2=1

[
(max

i
σi) ‖y‖2

]
= max
‖y‖2=1

[
(max

i
σi) · 1

]
= max

i
σi (8)

Next, we need to show that the upperbound is attained. Let

i′ = arg max
i

σi.

Then, the upperbound (8) is attained when

x = vi′ .

This is because ∥∥ΣV Tx
∥∥
2

= ‖Σei′‖2 = σi′ = max
i
σi.

In the equation above, ei′ is the vector that has 1 in the i′th position and zero at other positions.

(c) The singular value decomposition of A−1 can be calculated as

A−1 = (UΣV T )−1 = (V T )−1Σ−1U−1 = V Σ−1UT ,

where Σ−1ii =
1

σi
.

Then, using the result from subproblem (a) and (b), we can know that∥∥A−1∥∥
2

= max
i

1

σi
.

Therefore, the condition number of A is thus

‖A‖2
∥∥A−1∥∥

2
= (max

i
σi)(max

i

1

σi
) =

maxi σi
mini σi

.
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(d) We can reorganize (5) into this form:

‖δx‖2
‖δb‖2

· ‖b‖2
‖x‖2

≤ maxi σi
mini σi

(9)

Because b = c1uimax , we have

x = A−1b = V Σ−1UT c1uimax = c1V Σ−1eimax =
c1

maxi σi
V eimax =

c1
maxi σi

vimax .

Similarly, since δb = c2uimin
, we have

δx = A−1δb =
c2

mini σi
vimin

.

Plugging all the information we have into (9), we get

‖δx‖2
‖δb‖2

· ‖b‖2
‖x‖2

=
c2

mini σi

c2
· c1

c1
maxi σi

=
maxi σi
mini σi

,

so the equality indeed holds.

Problem 5 (15 pts). On page 5 of lecture slide “fp guarddigit1.pdf”, we showed that subtracting
near values of the same sign can lead to large relative errors. Then, in slide “fp guarddigit2.pdf”, we
showed that with an guard digit, the relative error becomes small. However, the proof only applies to
subtracting numbers of the same sign.

In this problem, we discuss the error of adding two floating-point numbers of the same sign when
using p digits with no guard digit. As in the lecture slides, we will assume that

x > y ≥ 0

and x = x0.x1x2 · · ·xp−1 × β0 with x0 ≥ 1 and β ≥ 2.

We assume that before addition, y is shifted and then truncated to p digits. We denote the truncated
value of y after shifting as y. Then, after the addition is done, we assume the value is rounded to the
closest number (using rounding even) before being stored. The rounding error is denoted δ. To discuss
the final error generated in this process, we separate our discussion into two cases. You need to analyze
the error in these two cases using y, y and δ, similar to the proof in lecture slide “fp guarddigit2.pdf”.

(a) (10 pts) x+ y < β: In this case, we must also have x+ y < β because truncation can only decrease
the result. Since there is no carry out to the β1 bit, no rounding have to performed after addition.
The only error arises from the discarded bits when shifting y. Show that the relative error is less
than or equal to 2ε.

(b) (5 pts) x + y ≥ β: In this case, we must also have x + y ≥ β. This is because the addition in the
truncated position does not carry over to the untruncated bits, and thus removing it does not affect
the most significant bit. Therefore, there is a carry out to the β1 bit and you also have to consider
the rounding error after computing the sum. Show that the relative error is still less than or equal
to 2ε.

Solution.
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(a) Because no rounding have to performed after computation, the error is

|(x+ y)− (x+ y)| = |y − y| = y − y.

Suppose l bits is shifted out, then the error is at most

y − y ≤ (β − 1)(β−p + β−p−1 + · · ·+ β−p−l+1) < β−p+1

no matter how large l is. Then, the relative error is

y − y
x+ y

≤ β−p+1

1
= 2(

1

2
β−p+1) = 2ε

because x+ y ≥ 1.

(b) Because there is a carry out, we have to round off the rightmost bit before storing the result. The
rounded result can be written as

x+ y + δ where |δ| ≤ β−p+2

2
.

Therefore, the error is

|(x+ y)− (x+ y + δ)| = |(y − y)− δ| ≤ |y − y|+ |δ| ≤ β−p+1 +
β−p+2

2
.

The relative error is then

|(x+ y)− (x+ y + δ)|
x+ y

≤
1
2
β−p+2(1 + 2

β
)

β
= (1 +

2

β
)
1

2
β−p+1 ≤ 2ε.

The first inequality is due to x+ y ≥ β and the last inequality is due to β ≥ 2.

13


