Numerical Methods 2023 - Final exam

Solutions

Problem 1 (10 pts). Consider a linear system

$$
\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Please use CG method with

$$
\epsilon=0
$$

to solve it, and show your calculations including $k, \boldsymbol{x}, \boldsymbol{r}, \rho, \boldsymbol{w}, \alpha$. Calculate $A \boldsymbol{x}$ to verify if it is equal to b.

Solution.

We have

$$
k=0, \boldsymbol{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \boldsymbol{r}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \rho_{0}=\boldsymbol{r}^{T} \boldsymbol{r}=1
$$

in the beginning. For $k=1$, since

$$
\sqrt{\rho_{0}}=1>0
$$

we calculate

$$
\begin{aligned}
& \boldsymbol{p}=\boldsymbol{r}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{w}=A \boldsymbol{p}=\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right], \alpha=\frac{\rho_{0}}{\boldsymbol{p}^{T} \boldsymbol{w}}=\frac{1}{3} \\
& \boldsymbol{x}=\boldsymbol{x}+\alpha \boldsymbol{p}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / 3 \\
0
\end{array}\right], \\
& \boldsymbol{r}=\boldsymbol{r}-\alpha \boldsymbol{w}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
0 \\
1 / 3
\end{array}\right], \\
& \rho_{1}=\boldsymbol{r}^{T} \boldsymbol{r}=\frac{2}{9} .
\end{aligned}
$$

Next, when $k=2$,

$$
\sqrt{\rho_{1}}=\frac{\sqrt{2}}{3}>0
$$

Thus, we calculate

$$
\begin{aligned}
& \beta=\frac{\rho_{1}}{\rho_{0}}=\frac{2}{9}, \\
& \boldsymbol{p}=\boldsymbol{r}+\beta \boldsymbol{p}=\left[\begin{array}{c}
1 / 3 \\
0 \\
1 / 3
\end{array}\right]+\frac{2}{9}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
2 / 9 \\
1 / 3
\end{array}\right] \\
& \boldsymbol{w}=A \boldsymbol{p}=\left[\begin{array}{c}
13 / 9 \\
0 \\
13 / 9
\end{array}\right], \alpha=\frac{\rho_{1}}{\boldsymbol{p}^{T} \boldsymbol{w}}=\frac{2 / 9}{26 / 27}=\frac{3}{13}, \\
& \boldsymbol{x}=\boldsymbol{x}+\alpha \boldsymbol{p}=\left[\begin{array}{c}
0 \\
1 / 3 \\
0
\end{array}\right]+\frac{3}{13}\left[\begin{array}{l}
1 / 3 \\
2 / 9 \\
1 / 3
\end{array}\right]=\left[\begin{array}{l}
1 / 13 \\
5 / 13 \\
1 / 13
\end{array}\right], \\
& \boldsymbol{r}=\boldsymbol{r}-\alpha \boldsymbol{w}=\left[\begin{array}{c}
1 / 3 \\
0 \\
1 / 3
\end{array}\right]-\frac{3}{13}\left[\begin{array}{c}
13 / 9 \\
0 \\
13 / 9
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \\
& \rho_{2}=\boldsymbol{r}^{T} \boldsymbol{r}=0 .
\end{aligned}
$$

When $k=3$, we have

$$
\sqrt{\rho_{2}}=0
$$

which satisfies the stopping condition. Therefore, the algorithm stops, and the solution is

$$
\boldsymbol{x}=\left[\begin{array}{l}
1 / 13 \\
5 / 13 \\
1 / 13
\end{array}\right]
$$

To verify the answer,

$$
A \boldsymbol{x}=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
1 / 13 \\
5 / 13 \\
1 / 13
\end{array}\right]=\left[\begin{array}{c}
3 / 13-5 / 13+2 / 13 \\
-1 / 13+15 / 13-1 / 13 \\
2 / 13-5 / 13+3 / 13
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Problem 2 (25 pts). In our slides "sparse_CG2.pdf", we have a Lemma tells that solving

$$
\begin{align*}
& \min _{\boldsymbol{p}}\left\|\boldsymbol{p}-\boldsymbol{r}_{k-1}\right\|_{2} \tag{1}\\
& \text { s.t. } \boldsymbol{p} \in \operatorname{span}\left\{A \boldsymbol{p}_{1}, \ldots, A \boldsymbol{p}_{k-1}\right\}^{\perp}
\end{align*}
$$

is equivalent to solving

$$
\begin{equation*}
\min _{\boldsymbol{z}}\left\|\boldsymbol{r}_{k-1}-A P_{k-1} \boldsymbol{z}\right\|_{2} \tag{2}
\end{equation*}
$$

where

$$
P_{k-1}=\left[\begin{array}{lll}
\boldsymbol{p}_{1} & \cdots & \boldsymbol{p}_{k-1}
\end{array}\right]
$$

Let us re-prove this Lemma in this problem. Without loss of generality, we assume

$$
\boldsymbol{p} \in \mathbb{R}^{n} \text { and } \boldsymbol{r}_{k-1} \in \mathbb{R}^{n}
$$

Thus, there exists some vectors

$$
\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n} \in \operatorname{span}\left\{A \boldsymbol{p}_{1}, \ldots, A \boldsymbol{p}_{k-1}\right\}^{\perp}
$$

such that

$$
\begin{align*}
\boldsymbol{r}_{k-1} & =\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j} \tag{3}\\
\boldsymbol{p} & =\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j},
\end{align*}
$$

with some $\left\{a_{i}\right\},\left\{b_{j}\right\}$ and $\left\{c_{j}\right\}$. Here $\left\{a_{i}\right\},\left\{b_{j}\right\}$ are constants, but $\left\{c_{j}\right\}$ are variables to be decided. Then (1) can be rewritten to

$$
\min _{c_{1}, \ldots, c_{n}}\left\|\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right)\right\|_{2}
$$

which is further equivalent to

$$
\begin{equation*}
\min _{c_{1}, \ldots, c_{n}}\left\|\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right)\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

by taking the square.
To complete the proof, please help us to prove the following problems:
(a) (5 pts) Prove that

$$
\begin{equation*}
\left(\sum_{j=1}^{n} d_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{i=1}^{k-1} e_{i} A \boldsymbol{p}_{i}\right)=0 \tag{5}
\end{equation*}
$$

for any $\left\{d_{j} \mid j=1, \ldots n\right\}$ and $\left\{e_{i} \mid i=1, \ldots, k-1\right\}$.
(b) (10 pts) Use

$$
\|\boldsymbol{x}\|_{2}^{2}=\boldsymbol{x}^{T} \boldsymbol{x}
$$

to expand (4) and apply (5) to prove that

$$
\boldsymbol{p}=\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}
$$

is an optimal solution for (4).
(c) (10 pts) To finish the proof, we show that there exists \boldsymbol{z} such that it is an optimal solution of (2), and

$$
\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}=\boldsymbol{r}_{k-1}-A P_{k-1} \boldsymbol{z}
$$

To do this, you need to use (3) and (5). Then with (b), we have

$$
\boldsymbol{p}_{k}=\boldsymbol{r}_{k-1}-A P_{k-1} \boldsymbol{z}_{k-1},
$$

where \boldsymbol{p}_{k} solves (1) and \boldsymbol{z}_{k-1} solves (2).

Solution.

(a) Because

$$
\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n} \in \operatorname{span}\left\{A \boldsymbol{p}_{1}, \ldots, A \boldsymbol{p}_{k-1}\right\}^{\perp}
$$

we know that

$$
\boldsymbol{q}_{j}^{T}\left(\sum_{i=1}^{k-1} e_{i} A \boldsymbol{p}_{i}\right)=0
$$

for all $j=1, \ldots, n$ with given any $\left\{e_{i} \mid i=1, \ldots, k-1\right\}$. Therefore,

$$
\left(\sum_{j=1}^{n} d_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{i=1}^{k-1} e_{i} A \boldsymbol{p}_{i}\right)=\sum_{j=1}^{n} d_{j} \boldsymbol{q}_{j}^{T}\left(\sum_{i=1}^{k-1} e_{i} A \boldsymbol{p}_{i}\right)=0
$$

(b) Because

$$
\|\boldsymbol{x}\|_{2}^{2}=\boldsymbol{x}^{T} \boldsymbol{x}
$$

we have that is the function minimized in (4)

$$
\begin{align*}
& \left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right)\right)^{T}\left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right)\right) \\
= & \left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}\right)-2\left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}-\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right) \\
& +\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}-\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}-\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right) . \tag{6}
\end{align*}
$$

By the result of (a), (??) can be derived as

$$
\begin{aligned}
& \left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}\right)+2\left(\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right) \\
& +\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}\right)^{T}\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}\right)+\left(\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right)^{T}\left(\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right) \\
= & \left\|\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right\|_{2}^{2}+\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}\right)^{T}\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}\right)
\end{aligned}
$$

so the minimization problem (4) is then equivalent to

$$
\begin{equation*}
\min _{c_{1}, \ldots, c_{n}}\left\|\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right\|_{2}^{2}+\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}\right)^{T}\left(\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}\right) \equiv \min _{c_{1}, \ldots, c_{n}}\left\|\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}-\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right\|_{2}^{2} \tag{7}
\end{equation*}
$$

Since we can take

$$
c_{j}=b_{j}
$$

for all $j=1, \ldots, n$ as the solution of (??), and it implies that

$$
\boldsymbol{p}=\sum_{j=1}^{n} c_{j} \boldsymbol{q}_{j}=\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}
$$

is an optimal solution.
(c) By (3), the square of the function minimized in (2) is equal to

$$
\begin{aligned}
\left\|\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}-A P_{k-1} \boldsymbol{z}\right\|_{2}^{2} & =\left\|\sum_{i=1}^{k-1} a_{i} A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}-\sum_{i=1}^{k-1} z_{i} A \boldsymbol{p}_{i}\right\|_{2}^{2} \\
& =\left\|\sum_{i=1}^{k-1}\left(a_{i}-z_{i}\right) A \boldsymbol{p}_{i}+\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right\|_{2}^{2} \\
& =\left\|\sum_{i=1}^{k-1}\left(a_{i}-z_{i}\right) A \boldsymbol{p}_{i}\right\|_{2}^{2}+\left\|\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}\right\|_{2}^{2}
\end{aligned}
$$

where the last equality is from (5). We can take

$$
\begin{equation*}
z_{i}=a_{i} \tag{8}
\end{equation*}
$$

for all $i=1, \ldots, k-1$, to minimize (2). In this situation, (??) and (3) imply that

$$
\boldsymbol{r}_{k-1}-A P_{k-1} \boldsymbol{z}=\sum_{j=1}^{n} b_{j} \boldsymbol{q}_{j}
$$

Problem 3 (15 pts). In our slides "equation_onevar1.pdf", we learned how to use Newton method to solve an one variable minimization problem

$$
\min _{x} f(x)
$$

by given an initial point $x^{(0)}$ and the update rule

$$
x^{(k+1)}=x^{(k)}-\frac{f^{\prime}\left(x^{(k)}\right)}{f^{\prime \prime}\left(x^{(k)}\right)} .
$$

Now, we consider a two variables function

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}
$$

and we also know that the update rule of two dimension Newton method is

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\nabla^{2} g\left(\boldsymbol{x}^{(k)}\right)\right)^{-1} \nabla g\left(\boldsymbol{x}^{(k)}\right)
$$

where

$$
\nabla^{2} g(\boldsymbol{x})=\left[\begin{array}{cc}
\frac{\partial^{2} g(\boldsymbol{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} g(\boldsymbol{x})}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} g(\boldsymbol{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} g(\boldsymbol{x})}{\partial x_{2}^{2}}
\end{array}\right] .
$$

(a) (10 pts) Run Newton method with an initial point

$$
\boldsymbol{x}^{(0)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

until reaching a point \boldsymbol{x}^{*} that we cannot do further updates (i.e., $\nabla g\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.)
(b) (5 pts) Does the solution you find in (a) minimize the minimization problem

$$
\min _{\boldsymbol{x}} g(\boldsymbol{x}) ?
$$

If so, please prove it. Else, please give a counter example.

Solution.

(a) We can calculate

$$
\nabla g(\boldsymbol{x})=\left[\begin{array}{c}
2 x_{1} \\
-2 x_{2}
\end{array}\right]
$$

and

$$
\nabla^{2} g(\boldsymbol{x})=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

Therefore, when the update rule is applied,

$$
\boldsymbol{x}^{(1)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]^{-1}\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right]\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

and

$$
\boldsymbol{x}^{(2)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\boldsymbol{x}^{(1)} .
$$

Hence,

$$
\boldsymbol{x}^{*}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

(b) There is a point $(0,1)$ such that

$$
g(0,1)=-1<0=g(0,0)
$$

so the solution \boldsymbol{x}^{*} in (a) does not minimize the minimization problem

$$
\min _{\boldsymbol{x}} g(\boldsymbol{x})
$$

The reason is that Newton method solves the first-order condition

$$
\begin{equation*}
\nabla g(\boldsymbol{x})=\mathbf{0} \tag{9}
\end{equation*}
$$

of the second-order approximation

$$
g(\boldsymbol{x})+\nabla g(\boldsymbol{x})^{T} \boldsymbol{d}+\frac{1}{2} \boldsymbol{d}^{T} \nabla^{2} g(\boldsymbol{x}) \boldsymbol{d}
$$

and (??) only guarantees the solution is a stationary point, which contains local minimum, local maximum, global minimum, global maximum, saddle point and inflection point. In function g, we have

$$
g\left(\boldsymbol{x}^{*}+\delta\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=(0+\delta)^{2}-0^{2}=\delta^{2}>0=g\left(\boldsymbol{x}^{*}\right)
$$

and

$$
g\left(\boldsymbol{x}^{*}+\delta\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=0^{2}-(0+\delta)^{2}=-\delta^{2}<0=g\left(\boldsymbol{x}^{*}\right)
$$

for all $\delta>0$, which means \boldsymbol{x}^{*} is a minimal point in the $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ direction but a maximal point in the $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ direction. Usually, we call this point as a "saddle point", because the shape of the simplest example is like a saddle.

Problem 4 (25 pts). Consider the function

$$
f(x)=-(x-2)^{2}
$$

To approximate the function $f(x)$ using discrete Fourier transform, we will consider these $2 m$ points

$$
\left(x_{0}, f\left(x_{0}\right)\right), \cdots,\left(x_{2 m-1}, f\left(x_{2 m-1}\right)\right)
$$

where

$$
x_{j}=\frac{2 j}{m}, j=0, \ldots, 2 m-1
$$

We wish to approximate the function using a Fourier series with $2 n$ coefficients:

$$
\begin{equation*}
S_{n}(z)=\frac{a_{0}+a_{n} \cos n z}{2}+\sum_{k=1}^{n-1}\left(a_{k} \cos k z+b_{k} \sin k z\right) \tag{10}
\end{equation*}
$$

In this problem, we will consider the case where $m=n=2$.
(a) (5 pts) Transform the coordinates x_{j} into z_{j} so that the new coordinates z_{j} are in the interval $[-\pi, \pi]$. Then, calculate and list the values

$$
\left(z_{0}, f\left(x_{0}\right)\right), \cdots,\left(z_{2 m-1}, f\left(x_{2 m-1}\right)\right)
$$

(b) (10 pts) Give the matrix A_{2}, A_{1} and P required by the fast Fourier transform algorithm. That is, the discrete Fourier transform matrix F can be decomposed into

$$
F=A_{2} A_{1} P
$$

(c) (5 pts) Following (b), calculate the coefficient vector \boldsymbol{c} given by

$$
\boldsymbol{c}=A_{2} A_{1} P \boldsymbol{y}
$$

where $y_{j}=f\left(x_{j}\right)$. Then, calculate the coefficients a_{k} and b_{k} required by equation (6). Finally, write down the obtained Fourier series in terms of z in the form of (6).
(d) (5 pts) The series we obtained in subproblem (c) approximate the shifted and scaled version of $f(x)$ in the interval $[-\pi, \pi]$. However, we are interested in approximating the original $f(x)$ in the interval $[0,4]$. Given any $x \in[0,4]$, show how to calculate the approximated value given by the Fourier series. That is, you need to rewrite the $S_{n}(z)$ obtained in subproblem (c) in terms of x.

Solution.

(a) The given x_{j} are in the interval $[0,4]$. Therefore, to transform them into the interval $[-\pi, \pi]$, we can let

$$
z_{j}=\frac{x_{j}-2}{2} \pi
$$

Then, the function data are therefore

$$
\begin{aligned}
\left(z_{0}, f\left(x_{0}\right)\right) & =(-\pi,-4) \\
\left(z_{1}, f\left(x_{1}\right)\right) & =\left(-\frac{\pi}{2},-1\right) \\
\left(z_{2}, f\left(x_{2}\right)\right) & =(0,0) \\
\left(z_{3}, f\left(x_{3}\right)\right) & =\left(\frac{\pi}{2},-1\right) .
\end{aligned}
$$

(b) The δ we will be using is

$$
e^{-i \pi / m}=-i
$$

To calculate A_{2}, we have

$$
L=2^{2}=4, \quad r=\frac{2 m}{L}=\frac{4}{4}=1
$$

and so

$$
\begin{align*}
A_{2} & =I_{r} \otimes B_{L} \\
& =I_{1} \otimes B_{4} \\
& =[1] \otimes\left[\begin{array}{cc}
I_{2} & \Omega_{2} \\
I_{2} & -\Omega_{2}
\end{array}\right], \quad \text { where } \Omega_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & \delta \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -\delta
\end{array}\right] \tag{11}
\end{align*}
$$

To get A_{1}, we have

$$
L=2^{1}=2, \quad r=\frac{2 m}{L}=2 .
$$

and

$$
\begin{align*}
A_{1} & =I_{r} \otimes B_{L} \\
& =I_{2} \otimes B_{2} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{cc}
I_{1} & \Omega_{1} \\
I_{1} & -\Omega_{1}
\end{array}\right], \quad \text { where } \Omega_{1}=[1] \\
& =\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] \tag{12}
\end{align*}
$$

The permutation is calculated by reversing the binary representation.

$$
\begin{array}{ll}
00 \rightarrow 00 & \text { column } 0 \text { swapped to column } 0 \\
01 \rightarrow 10 & \text { column } 1 \text { swapped to column 2 } \\
10 \rightarrow 01 & \text { column } 2 \text { swapped to column 1 } \\
11 \rightarrow 11 & \text { column } 3 \text { swapped to column 3 }
\end{array}
$$

Therefore, we have

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \tag{13}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(c) First, the vector \boldsymbol{y} is

$$
\left[\begin{array}{c}
f(-\pi) \\
f\left(-\frac{\pi}{2}\right) \\
f(0) \\
f\left(\frac{\pi}{2}\right)
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-1 \\
0 \\
-1
\end{array}\right]
$$

Therefore, by (??) we have

$$
P \boldsymbol{y}=\left[\begin{array}{c}
-4 \\
0 \\
-1 \\
-1
\end{array}\right]
$$

Then by (??) and (??) we can then calculate

$$
\begin{aligned}
& A_{1}(P \boldsymbol{y})= {\left[\begin{array}{l}
-4 \\
-4 \\
-2 \\
0
\end{array}\right] } \\
& \text { and } \boldsymbol{c}=A_{2}\left(A_{1} P \boldsymbol{y}\right)=\left[\begin{array}{l}
-6 \\
-4 \\
-2 \\
-4
\end{array}\right] .
\end{aligned}
$$

From \boldsymbol{c} we can then calculate

$$
\begin{aligned}
& a_{0}=\frac{\operatorname{Re}\left(c_{0}\right)(-1)^{0}}{2}=-3 \\
& a_{1}=\frac{\operatorname{Re}\left(c_{1}\right)(-1)^{1}}{2}=2 \\
& a_{2}=\frac{\operatorname{Re}\left(c_{2}\right)(-1)^{2}}{2}=-1 \\
& b_{1}=\frac{\operatorname{Im}\left(c_{1}\right)(-1)^{1}}{2}=0 .
\end{aligned}
$$

Therefore, the transformed series in terms of z is

$$
\begin{equation*}
S_{n}(z)=\frac{-3-\cos (2 z)}{2}+2 \cos (z) \tag{14}
\end{equation*}
$$

(d) Because

$$
z=\frac{x-2}{2} \pi,
$$

for any x we can calculate the approximated value by simply substituting z in (??):

$$
S_{n}(x)=\frac{-3-\cos ((x-2) \pi)}{2}+2 \cos \left(\frac{(x-2)}{2} \pi\right)
$$

Problem 5 (25 pts). Consider the continuous least square problem on the interval $[a, b]=[0,1]$.
(a) (5 pts) We would like to approximate

$$
f(x)=x
$$

using this list of polynomials:

$$
\begin{aligned}
& \phi_{1}(x)=1 \\
& \phi_{2}(x)=x^{2}
\end{aligned}
$$

That is, we are solving the following minimization problem:

$$
\min E=\int_{0}^{1}\left(x-a_{1} \phi_{1}(x)-a_{2} \phi_{2}(x)\right)^{2} d x
$$

Derive the linear system

$$
A\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=b
$$

we need to solve for this least square problem. You only need to calculate the values of A and b and are not required to solve the linear equations.
Note: Our functions ϕ_{1} and ϕ_{2} are 1 and x^{2}, instead of 1 and x. Thus, either you directly check $\frac{\partial E}{\partial a_{j}}=0$, or you need to apply the equations on page 4 of "FFT_basic1.pdf" with care.
(b) (5 pts) Following the definition of orthogonality in lecture slide "FFT_basic1.pdf", are ϕ_{1} and ϕ_{2} orthogonal? Show your calculation.
(c) (10 pts) In order to solve the coefficient for each polynomials independently without solving a system of linear equations, we will need orthogonal polynomials. Identifying orthogonal polynomials are not easy. Fortunately, we can use the Gram-Schmidt process to orthogonalize a set of independent functions. Formally, given a set of linearly independent functions

$$
\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

the Gram-Schmidt process goes as follows:

$$
\begin{aligned}
u_{1} & =v_{1} \\
u_{2} & =v_{2}-\operatorname{proj}_{u_{1}}\left(v_{2}\right) \\
u_{3} & =v_{3}-\operatorname{proj}_{u_{1}}\left(v_{3}\right)-\operatorname{proj}_{u_{2}}\left(v_{3}\right) \\
& \vdots \\
u_{n} & =v_{n}-\sum_{i=1}^{n-1} \operatorname{proj}_{u_{i}}\left(v_{n}\right) \\
\text { where } \operatorname{proj}_{u}(v)= & \frac{\int_{0}^{1} u(t) v(t) d t}{\int_{0}^{1} u(t)^{2} d t} u(x)
\end{aligned}
$$

The set of output functions

$$
\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}
$$

will be orthogonal. Apply the Gram-Schmidt process to $\left\{\phi_{1}, \phi_{2}\right\}$ to obtain a set of orthogonal polynomials $\left\{u_{1}, u_{2}\right\}$. Check that u_{1} and u_{2} are indeed orthogonal after the process.
(d) (5 pts) Solve the continuous least square problem but with the new orthogonal polynomials:

$$
\min E=\int_{0}^{1}\left(x-a_{1} u_{1}(x)-a_{2} u_{2}(x)\right)^{2} d x
$$

Show how the coefficients a_{1} and a_{2} can be calculated without solving a system of linear equations.

Solution.

(a) The minimizer of E will satisfy

$$
\frac{\partial E}{\partial a_{1}}=\frac{\partial E}{\partial a_{2}}=0 .
$$

For a_{1} we have

$$
\begin{aligned}
& \frac{\partial E}{\partial a_{1}}=2 \int_{0}^{1}\left(x-a_{1}-a_{2} x^{2}\right)(-1) d x=0 \\
& \quad \Longleftrightarrow \frac{x^{2}}{2}-a_{1} x-\left.a_{2} \frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{2}-a_{1}-\frac{a_{2}}{3}=0
\end{aligned}
$$

Then, for a_{2} we have

$$
\begin{aligned}
\frac{\partial E}{\partial a_{2}} & =2 \int_{0}^{1}\left(x-a_{1}-a_{2} x^{2}\right)\left(-x^{2}\right) d x=0 \\
& \Longleftrightarrow \frac{x^{4}}{4}-a_{1} \frac{x^{3}}{3}-\left.a_{2} \frac{x^{5}}{5}\right|_{0} ^{1}=\frac{1}{4}-\frac{a_{1}}{3}-\frac{a_{2}}{5}=0
\end{aligned}
$$

Therefore, the system of linear equations can be represented as

$$
A=\left[\begin{array}{cc}
1 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{5}
\end{array}\right] \text { and } b=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{4}
\end{array}\right] .
$$

(b) Because

$$
\int_{0}^{1} 1 \cdot x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \neq 0
$$

they are not orthogonal.
(c) Following the Gram-Schmidt process, we have

$$
\begin{aligned}
u_{1}(x) & =\phi_{1}(x)=1 \\
u_{2}(x) & =\phi_{2}(x)-\operatorname{proj}_{u_{1}}\left(\phi_{2}\right) \\
& =x^{2}-\frac{\int_{0}^{1} t^{2} \cdot 1 d t}{\int_{0}^{1} 1^{2} d t} \cdot 1 \\
& =x^{2}-\frac{1}{3} .
\end{aligned}
$$

Because

$$
\int_{0}^{1} 1 \cdot\left(x^{2}-\frac{1}{3}\right) d x=\frac{x^{3}}{3}-\left.\frac{x}{3}\right|_{0} ^{1}=0
$$

they are indeed orthogonal.
(d) Because the polynomials are now orthogonal, according to lecture slide "FFT_basic1.pdf", we can
calculate the coefficients as follows:

$$
\begin{aligned}
a_{1} & =\frac{\int_{0}^{1} x \cdot 1 d x}{\int_{0}^{1} 1^{2} d x}=\frac{1}{2} \\
a_{2} & =\frac{\int_{0}^{1} x \cdot\left(x^{2}-\frac{1}{3}\right) d x}{\int_{0}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x} \\
& =\frac{\frac{x^{4}}{4}-\left.\frac{x^{2}}{6}\right|_{0} ^{1}}{\frac{x^{5}}{5}-\frac{2}{9} x^{3}+\left.\frac{1}{9}\right|_{0} ^{1}} \\
& =\frac{\frac{1}{12}}{\frac{4}{45}}=\frac{15}{16} .
\end{aligned}
$$

