
Numerical Methods 2023 — Final exam

Solutions

Problem 1 (10 pts). Consider a linear system 3 −1 2
−1 3 −1
2 −1 3

x =

01
0

 .

Please use CG method with
ϵ = 0

to solve it, and show your calculations including k,x, r, ρ,w, α. Calculate Ax to verify if it is equal to
b.

Solution.
We have

k = 0, x =

00
0

 , r =

01
0

 , ρ0 = rTr = 1

in the beginning. For k = 1, since √
ρ0 = 1 > 0

we calculate

p =r =

01
0

 , w = Ap =

−1
3
−1

 , α =
ρ0

pTw
=

1

3
,

x =x+ αp =

00
0

+
1

3

01
0

 =

 0
1/3
0

 ,

r =r − αw =

01
0

− 1

3

−1
3
−1

 =

1/30
1/3

 ,

ρ1 =rTr =
2

9
.

Next, when k = 2,
√
ρ1 =

√
2

3
> 0.
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Thus, we calculate

β =
ρ1
ρ0

=
2

9
,

p =r + βp =

1/30
1/3

+
2

9

01
0

 =

1/32/9
1/3


w =Ap =

13/90
13/9

 , α =
ρ1

pTw
=

2/9

26/27
=

3

13
,

x =x+ αp =

 0
1/3
0

+
3

13

1/32/9
1/3

 =

1/135/13
1/13

 ,

r =r − αw =

1/30
1/3

− 3

13

13/90
13/9

 =

00
0

 ,

ρ2 =rTr = 0.

When k = 3, we have √
ρ2 = 0,

which satisfies the stopping condition. Therefore, the algorithm stops, and the solution is

x =

1/135/13
1/13

 .

To verify the answer,

Ax =

 3 −1 2
−1 3 −1
2 −1 3

1/135/13
1/13

 =

 3/13− 5/13 + 2/13
−1/13 + 15/13− 1/13
2/13− 5/13 + 3/13

 =

01
0

 .

Problem 2 (25 pts). In our slides “sparse CG2.pdf”, we have a Lemma tells that solving

min
p

∥p− rk−1∥2

s.t. p ∈ span{Ap1, . . . , Apk−1}⊥
(1)

is equivalent to solving
min
z

∥rk−1 − APk−1z∥2, (2)

where
Pk−1 =

[
p1 · · · pk−1

]
Let us re-prove this Lemma in this problem. Without loss of generality, we assume

p ∈ Rn and rk−1 ∈ Rn.

Thus, there exists some vectors

q1, . . . , qn ∈ span{Ap1, . . . , Apk−1}⊥
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such that

rk−1 =
k−1∑
i=1

aiApi +
n∑

j=1

bjqj (3)

p =
n∑

j=1

cjqj,

with some {ai}, {bj} and {cj}. Here {ai}, {bj} are constants, but {cj} are variables to be decided. Then
(1) can be rewritten to

min
c1,...,cn

∥∥∥∥∥
n∑

j=1

cjqj −

(
k−1∑
i=1

aiApi +
n∑

j=1

bjqj

)∥∥∥∥∥
2

,

which is further equivalent to

min
c1,...,cn

∥∥∥∥∥
n∑

j=1

cjqj −

(
k−1∑
i=1

aiApi +
n∑

j=1

bjqj

)∥∥∥∥∥
2

2

(4)

by taking the square.
To complete the proof, please help us to prove the following problems:

(a) (5 pts) Prove that (
n∑

j=1

djqj

)T (k−1∑
i=1

eiApi

)
= 0 (5)

for any {dj | j = 1, . . . n} and {ei | i = 1, . . . , k − 1}.

(b) (10 pts) Use
∥x∥22 = xTx.

to expand (4) and apply (5) to prove that

p =
n∑

j=1

bjqj

is an optimal solution for (4).

(c) (10 pts) To finish the proof, we show that there exists z such that it is an optimal solution of (2),
and

n∑
j=1

bjqj = rk−1 − APk−1z.

To do this, you need to use (3) and (5). Then with (b), we have

pk = rk−1 − APk−1zk−1,

where pk solves (1) and zk−1 solves (2).

Solution.
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(a) Because
q1, . . . , qn ∈ span{Ap1, . . . , Apk−1}⊥,

we know that

qT
j

(
k−1∑
i=1

eiApi

)
= 0

for all j = 1, . . . , n with given any {ei | i = 1, . . . , k − 1}. Therefore,(
n∑

j=1

djqj

)T (k−1∑
i=1

eiApi

)
=

n∑
j=1

djq
T
j

(
k−1∑
i=1

eiApi

)
= 0.

(b) Because
∥x∥22 = xTx,

we have that is the function minimized in (4)(
n∑

j=1

cjqj −

(
k−1∑
i=1

aiApi +
n∑

j=1

bjqj

))T ( n∑
j=1

cjqj −

(
k−1∑
i=1

aiApi +
n∑

j=1

bjqj

))

=

(
n∑

j=1

cjqj

)T ( n∑
j=1

cjqj

)
− 2

(
n∑

j=1

cjqj

)T (k−1∑
i=1

aiApi −
n∑

j=1

bjqj

)

+

(
k−1∑
i=1

aiApi −
n∑

j=1

bjqj

)T (k−1∑
i=1

aiApi −
n∑

j=1

bjqj

)
. (6)

By the result of (a), (??) can be derived as(
n∑

j=1

cjqj

)T ( n∑
j=1

cjqj

)
+ 2

(
n∑

j=1

cjqj

)T ( n∑
j=1

bjqj

)

+

(
k−1∑
i=1

aiApi

)T (k−1∑
i=1

aiApi

)
+

(
n∑

j=1

bjqj

)T ( n∑
j=1

bjqj

)

=

∥∥∥∥∥
n∑

j=1

cjqj −
n∑

j=1

bjqj

∥∥∥∥∥
2

2

+

(
k−1∑
i=1

aiApi

)T (k−1∑
i=1

aiApi

)
so the minimization problem (4) is then equivalent to

min
c1,...,cn

∥∥∥∥∥
n∑

j=1

cjqj −
n∑

j=1

bjqj

∥∥∥∥∥
2

2

+

(
k−1∑
i=1

aiApi

)T (k−1∑
i=1

aiApi

)
≡ min

c1,...,cn

∥∥∥∥∥
n∑

j=1

cjqj −
n∑

j=1

bjqj

∥∥∥∥∥
2

2

. (7)

Since we can take
cj = bj

for all j = 1, . . . , n as the solution of (??), and it implies that

p =
n∑

j=1

cjqj =
n∑

j=1

bjqj

is an optimal solution.
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(c) By (3), the square of the function minimized in (2) is equal to∥∥∥∥∥
k−1∑
i=1

aiApi +
n∑

j=1

bjqj − APk−1z

∥∥∥∥∥
2

2

=

∥∥∥∥∥
k−1∑
i=1

aiApi +
n∑

j=1

bjqj −
k−1∑
i=1

ziApi

∥∥∥∥∥
2

2

=

∥∥∥∥∥
k−1∑
i=1

(ai − zi)Api +
n∑

j=1

bjqj

∥∥∥∥∥
2

2

=

∥∥∥∥∥
k−1∑
i=1

(ai − zi)Api

∥∥∥∥∥
2

2

+

∥∥∥∥∥
n∑

j=1

bjqj

∥∥∥∥∥
2

2

,

where the last equality is from (5). We can take

zi = ai (8)

for all i = 1, . . . , k − 1, to minimize (2). In this situation, (??) and (3) imply that

rk−1 − APk−1z =
n∑

j=1

bjqj.

Problem 3 (15 pts). In our slides “equation onevar1.pdf”, we learned how to use Newton method to
solve an one variable minimization problem

min
x

f(x)

by given an initial point x(0) and the update rule

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
.

Now, we consider a two variables function

g(x1, x2) = x2
1 − x2

2,

and we also know that the update rule of two dimension Newton method is

x(k+1) = x(k) −
(
∇2g(x(k))

)−1∇g(x(k)),

where

∇2g(x) =

[
∂2g(x)

∂x2
1

∂2g(x)
∂x1∂x2

∂2g(x)
∂x2∂x1

∂2g(x)

∂x2
2

]
.

(a) (10 pts) Run Newton method with an initial point

x(0) =

[
2
1

]
until reaching a point x∗ that we cannot do further updates (i.e., ∇g(x∗) = 0.)
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(b) (5 pts) Does the solution you find in (a) minimize the minimization problem

min
x

g(x)?

If so, please prove it. Else, please give a counter example.

Solution.

(a) We can calculate

∇g(x) =

[
2x1

−2x2

]
and

∇2g(x) =

[
2 0
0 −2

]
.

Therefore, when the update rule is applied,

x(1) =

[
2
1

]
−
[
2 0
0 −2

]−1 [
4
−2

]
=

[
2
1

]
−
[
1/2 0
0 −1/2

] [
4
−2

]
=

[
2
1

]
−
[
2
1

]
=

[
0
0

]
.

and

x(2) =

[
0
0

]
−
[
2 0
0 −2

]−1 [
0
0

]
=

[
0
0

]
= x(1).

Hence,

x∗ =

[
0
0

]
.

(b) There is a point (0, 1) such that

g(0, 1) = −1 < 0 = g(0, 0),

so the solution x∗ in (a) does not minimize the minimization problem

min
x

g(x).

The reason is that Newton method solves the first-order condition

∇g(x) = 0 (9)

of the second-order approximation

g(x) +∇g(x)Td+
1

2
dT∇2g(x)d,

and (??) only guarantees the solution is a stationary point, which contains local minimum, local
maximum, global minimum, global maximum, saddle point and inflection point. In function g, we
have

g(x∗ + δ

[
1
0

]
) = (0 + δ)2 − 02 = δ2 > 0 = g(x∗)

and

g(x∗ + δ

[
0
1

]
) = 02 − (0 + δ)2 = −δ2 < 0 = g(x∗)

for all δ > 0, which means x∗ is a minimal point in the

[
1
0

]
direction but a maximal point in the[

0
1

]
direction. Usually, we call this point as a “saddle point”, because the shape of the simplest

example is like a saddle.
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Problem 4 (25 pts). Consider the function

f(x) = −(x− 2)2.

To approximate the function f(x) using discrete Fourier transform, we will consider these 2m points

(x0, f(x0)) , · · · , (x2m−1, f(x2m−1))

where

xj =
2j

m
, j = 0, . . . , 2m− 1.

We wish to approximate the function using a Fourier series with 2n coefficients:

Sn(z) =
a0 + an cosnz

2
+

n−1∑
k=1

(
ak cos kz + bk sin kz

)
(10)

In this problem, we will consider the case where m = n = 2.

(a) (5 pts) Transform the coordinates xj into zj so that the new coordinates zj are in the interval [−π, π].
Then, calculate and list the values

(z0, f(x0)), · · · , (z2m−1, f(x2m−1)).

(b) (10 pts) Give the matrix A2, A1 and P required by the fast Fourier transform algorithm. That is,
the discrete Fourier transform matrix F can be decomposed into

F = A2A1P.

(c) (5 pts) Following (b), calculate the coefficient vector c given by

c = A2A1Py

where yj = f(xj). Then, calculate the coefficients ak and bk required by equation (6). Finally, write
down the obtained Fourier series in terms of z in the form of (6).

(d) (5 pts) The series we obtained in subproblem (c) approximate the shifted and scaled version of f(x)
in the interval [−π, π]. However, we are interested in approximating the original f(x) in the interval
[0, 4]. Given any x ∈ [0, 4], show how to calculate the approximated value given by the Fourier
series. That is, you need to rewrite the Sn(z) obtained in subproblem (c) in terms of x.

Solution.

(a) The given xj are in the interval [0, 4]. Therefore, to transform them into the interval [−π, π], we
can let

zj =
xj − 2

2
π.

Then, the function data are therefore

(z0, f(x0)) = (−π,−4)

(z1, f(x1)) = (−π

2
,−1)

(z2, f(x2)) = (0, 0)

(z3, f(x3)) = (
π

2
,−1).
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(b) The δ we will be using is
e−iπ/m = −i.

To calculate A2, we have

L = 22 = 4, r =
2m

L
=

4

4
= 1,

and so

A2 = Ir ⊗BL

= I1 ⊗B4

=
[
1
]
⊗
[
I2 Ω2

I2 −Ω2

]
, whereΩ2 =

[
1 0
0 δ

]

=


1 0 1 0
0 1 0 δ
1 0 −1 0
0 1 0 −δ

 (11)

To get A1, we have

L = 21 = 2, r =
2m

L
= 2.

and

A1 = Ir ⊗BL

= I2 ⊗B2

=

[
1 0
0 1

]
⊗
[
I1 Ω1

I1 −Ω1

]
, whereΩ1 =

[
1
]

=


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (12)

The permutation is calculated by reversing the binary representation.

00 → 00 column 0 swapped to column 0

01 → 10 column 1 swapped to column 2

10 → 01 column 2 swapped to column 1

11 → 11 column 3 swapped to column 3

Therefore, we have

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (13)

(c) First, the vector y is 
f(−π)
f(−π

2
)

f(0)
f(π

2
)

 =


−4
−1
0
−1

 .
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Therefore, by (??) we have

Py =


−4
0
−1
−1

 .

Then by (??) and (??) we can then calculate

A1(Py) =


−4
−4
−2
0



and c = A2(A1Py) =


−6
−4
−2
−4

 .

From c we can then calculate

a0 =
Re(c0)(−1)0

2
= −3

a1 =
Re(c1)(−1)1

2
= 2

a2 =
Re(c2)(−1)2

2
= −1

b1 =
Im(c1)(−1)1

2
= 0.

Therefore, the transformed series in terms of z is

Sn(z) =
−3− cos(2z)

2
+ 2 cos(z). (14)

(d) Because

z =
x− 2

2
π,

for any x we can calculate the approximated value by simply substituting z in (??):

Sn(x) =
−3− cos ((x− 2)π)

2
+ 2 cos

(
(x− 2)

2
π

)
.

Problem 5 (25 pts). Consider the continuous least square problem on the interval [a, b] = [0, 1].

(a) (5 pts) We would like to approximate
f(x) = x

using this list of polynomials:

ϕ1(x) = 1

ϕ2(x) = x2
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That is, we are solving the following minimization problem:

minE =

∫ 1

0

(x− a1ϕ1(x)− a2ϕ2(x))
2dx

Derive the linear system

A

[
a1
a2

]
= b

we need to solve for this least square problem. You only need to calculate the values of A and b and
are not required to solve the linear equations.

Note: Our functions ϕ1 and ϕ2 are 1 and x2, instead of 1 and x. Thus, either you directly check
∂E
∂aj

= 0, or you need to apply the equations on page 4 of “FFT basic1.pdf” with care.

(b) (5 pts) Following the definition of orthogonality in lecture slide “FFT basic1.pdf”, are ϕ1 and ϕ2

orthogonal? Show your calculation.

(c) (10 pts) In order to solve the coefficient for each polynomials independently without solving a system
of linear equations, we will need orthogonal polynomials. Identifying orthogonal polynomials are
not easy. Fortunately, we can use the Gram-Schmidt process to orthogonalize a set of independent
functions. Formally, given a set of linearly independent functions

{v1, v2, . . . , vn},

the Gram-Schmidt process goes as follows:

u1 = v1

u2 = v2 − proju1
(v2)

u3 = v3 − proju1
(v3)− proju2

(v3)

...

un = vn −
n−1∑
i=1

projui
(vn)

where proju(v) =

∫ 1

0
u(t)v(t)dt∫ 1

0
u(t)2dt

u(x)

The set of output functions
{u1, u2, . . . , un}

will be orthogonal. Apply the Gram-Schmidt process to {ϕ1, ϕ2} to obtain a set of orthogonal
polynomials {u1, u2}. Check that u1 and u2 are indeed orthogonal after the process.

(d) (5 pts) Solve the continuous least square problem but with the new orthogonal polynomials:

minE =

∫ 1

0

(x− a1u1(x)− a2u2(x))
2dx

Show how the coefficients a1 and a2 can be calculated without solving a system of linear equations.

Solution.
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(a) The minimizer of E will satisfy
∂E

∂a1
=

∂E

∂a2
= 0.

For a1 we have

∂E

∂a1
= 2

∫ 1

0

(x− a1 − a2x
2)(−1)dx = 0

⇐⇒ x2

2
− a1x− a2

x3

3

∣∣∣∣1
0

=
1

2
− a1 −

a2
3

= 0.

Then, for a2 we have

∂E

∂a2
= 2

∫ 1

0

(x− a1 − a2x
2)(−x2)dx = 0

⇐⇒ x4

4
− a1

x3

3
− a2

x5

5

∣∣∣∣1
0

=
1

4
− a1

3
− a2

5
= 0.

Therefore, the system of linear equations can be represented as

A =

[
1 1

3
1
3

1
5

]
and b =

[
1
2
1
4

]
.

(b) Because ∫ 1

0

1 · x2dx =
x3

3

∣∣∣∣1
0

=
1

3
̸= 0,

they are not orthogonal.

(c) Following the Gram-Schmidt process, we have

u1(x) = ϕ1(x) = 1

u2(x) = ϕ2(x)− proju1
(ϕ2)

= x2 −
∫ 1

0
t2 · 1dt∫ 1

0
12dt

· 1

= x2 − 1

3
.

Because ∫ 1

0

1 · (x2 − 1

3
)dx =

x3

3
− x

3

∣∣∣∣1
0

= 0,

they are indeed orthogonal.

(d) Because the polynomials are now orthogonal, according to lecture slide “FFT basic1.pdf”, we can
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calculate the coefficients as follows:

a1 =

∫ 1

0
x · 1dx∫ 1

0
12dx

=
1

2

a2 =

∫ 1

0
x · (x2 − 1

3
)dx∫ 1

0
(x2 − 1

3
)2dx

=

x4

4
− x2

6

∣∣∣1
0

x5

5
− 2

9
x3 + 1

9

∣∣1
0

=
1
12
4
45

=
15

16
.
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