
Numerical Methods 2022 — Midterm 2

Solutions

Problem 1 (10 pts). Find the tightest possible constants c1 and c2 satisfying

c1∥x∥1 ≤ ∥x∥∞ ≤ c2∥x∥1 ∀x ∈ Rn.

You must prove that your c1 and c2 are the tightest.

Solution.

∥x∥1 =
n∑

i=1

|xi| ≤ nmax
i

|xi| = n∥x∥∞ =⇒ c1 =
1

n

∥x∥∞ = max
i

|xi| ≤
n∑

i=1

|xi| = ∥x∥1 =⇒ c2 = 1

For x = (1, 1, . . . , 1), we have 1
n
∥x∥1 = 1 = ∥x∥∞. This shows that c1 is tight. For x = (1, 0, 0, . . . , 0),

we have ∥x∥∞ = 1 = ∥x∥1. Therefore, c2 is also tight.

Problem 2 (30 pts). Consider a different way to define the matrix norm for a matrix A ∈ Rn×n:

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

A2
ij

This is called the Frobenius norm. In answering the following questions, you may utilize the Cauchy-
Schwarz inequality in your proof:(

n∑
i=1

uivi

)2

≤

(
n∑

i=1

u2
i

)(
n∑

i=1

v2i

)
where ui, vi ∈ R

(a) (15 pts) Prove that Frobenius norm satisfies the three properties:

∥A∥ ≥ 0 (1)

∥A+B∥ ≤ ∥A∥+ ∥B∥ (2)

∥αA∥ = |α|∥A∥ (3)

for A,B ∈ Rn×n and α ∈ R.

(b) (15 pts) Does Frobenius norm satisfy the following condition?

∥Ax∥2 ≤ ∥A∥F∥x∥2 ∀x ∈ Rn, A ∈ Rn×n

If so, provide a proof. If not, provide a counter example.
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Solution.

(a) Since A2
ij ≥ 0, we know that

∑
i

∑
j A

2
ij ≥ 0 and thus ∥A∥F =

√∑
i

∑
j A

2
ij ≥ 0. This proves (1).

For (2), we have

∥A+B∥2F =
∑
i

∑
j

(Aij +Bij)
2

=
∑
i

∑
j

A2
ij +

∑
i

∑
j

B2
ij + 2

∑
i

∑
j

AijBij

≤ ∥A∥2F + ∥B∥2F + 2

√
(
∑
i

∑
j

A2
ij)(
∑
i

∑
j

B2
ij) (Cauchy-Schwarz)

= ∥A∥2F + ∥B∥2F + 2∥A∥F∥B∥F
= (∥A∥F + ∥B∥F )2.

This implies that ∥A+B∥F ≤ ∥A∥F + ∥B∥F .
For (3), we have

∥αA∥F =

√∑
i

∑
j

(αAij)2

=
√
α2

√∑
i

∑
j

A2
ij

= |α|∥A∥F .

(b) We have

∥Ax∥2 =

√√√√∑
i

(∑
j

Aijxj

)2

≤

√√√√∑
i

((∑
j

A2
ij

)(∑
j

x2
j

))
(Cauchy-Schwarz)

=

√√√√(∑
j

x2
j

)(∑
i

∑
j

A2
ij

)
= ∥A∥F∥x∥2.

Problem 3 (20 pts). Redo Problem 2, but replace Frobenius norm with the following max norm:

∥A∥max = max
i,j

|Aij|

(a) (10 pts) Prove properties (1), (2) and (3) for max norm.

(b) (10 pts) Does max norm satisfies the following condition?

∥Ax∥2 ≤ ∥A∥max∥x∥2 ∀x ∈ Rn, A ∈ Rn×n

If so, provide a proof. If not, provide a counter example.
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Solution.

(a) Since |Aij| ≥ 0, we know that ∥A∥max = maxi,j |Aij| ≥ 0. This proves (1).

For (2), we have

∥A+B∥max = max
i,j

|Aij +Bij|

≤ max
i,j

(|Aij|+ |Bij|)

≤ max
i,j

(
|Aij|+max

i′,j′
|Bi′j′|

)
= max

i,j
|Aij|+max

i′,j′
|Bi′j′|

= ∥A∥max + ∥B∥max.

For (3), we have

∥αA∥max = max
i,j

|αAij|

= |α|max
i,j

|Aij|

= |α|∥A∥max.

(b) The inequality does not hold. For example, let

A =

[
1 1
1 1

]
, x =

[
1
1

]
.

Then ∥Ax∥ = 2
√
2, ∥A∥max = 1 and ∥x∥2 =

√
2. Therefore, ∥Ax∥ > ∥A∥max∥x∥2.

Problem 4 (10 pts). Assume A is a sparse matrix stored in the following compressed column format

� value array: a

� row indices array: row ind

� column pointer array: col ptr

and n is the number of the columns. Please give the MATLAB codes of these functions. You can only
use the above information. For example, you cannot use a function to know the length of an array.

(a) (5 pts) the max norm of A

(b) (5 pts) the Frobenius norm of A

Solution.

(a) v = 0.0
for i = 1:col_ptr(n+1)-1

if a(i) > 0
abs_a = a(i);

else
abs_a = -a(i);
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end
if abs_a > v

v = abs_a;
end

end

(b) v = 0.0;
for i = 1:col_ptr(n+1)-1

v = v + a(i)ˆ2;
end
v = sqrt(v);

Note: You cannot use any special MATLAB function as we have mentioned that in the problem
statement.

Problem 5 (30 pts).

(a) (15 pts) On the page 10 of the slide “sparse iterative1.pdf”, we have a theorem to check the con-
vergence of Jacobi methods with the assumption

ρ(M−1N) < 1.

Now, we drop this assumption but directly check whether

(M−1N)k → 0, as k → ∞ (4)

with the matrix

A =

2 0 −1
1 −7 0
0 1 −3

 .

Specifically, please derive the analytic form of (M−1N)k, ∀k, and show that (4) holds.

(b) (15 pts) Let us check the Gauss-Seidel method with the iteration

x(k+1) = L−1(b+ Ux(k)),

where

L =


a11 0 · · · 0

a21 a22
. . . 0

...
...

. . . 0
an1 an2 · · · ann

 , U =


0 −a12 · · · −a1n

0 0
. . .

...
...

...
. . . −a(n−1)n

0 0 · · · 0

 .

Please check whether
(L−1U)k → 0, as k → ∞ (5)

with the same matrix A in (a), and explain why (5) implies the convergence of Gauss-Seidel Method.
Specifically, from (5) you must derive the relationship between

xk+1 − x∗ and xk − x∗

and also the analytic from of (L−1U)k.
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Solution.

(a) We have

M =

2 0 0
0 −7 0
0 0 −3

 , N =

 0 0 1
−1 0 0
0 −1 0

 .

Then, we calculate the power of M−1N to these general forms

(M−1N)3n+1 =

 0 0 1/(2 · (2 · 3 · 7)n)
1/(7 · (2 · 3 · 7)n) 0 0

0 1/(3 · (2 · 3 · 7)n) 0

 , n = 0, 1, . . .

(M−1N)3n+2 =

 0 1/((2 · 3) · (2 · 3 · 7)n) 0
0 0 1/((2 · 7) · (2 · 3 · 7)n)

1/((3 · 7) · (2 · 3 · 7)n) 0 0

 , n = 0, 1, . . .

(M−1N)3n =

1/(2 · 3 · 7)n 0 0
0 1/(2 · 3 · 7)n 0
0 0 1/(2 · 3 · 7)n

 , n = 1, 2, . . .

and we derive the general formula

(M−1N)k

=



 0 0 1/(2 · (2 · 3 · 7)⌊k/3⌋)
1/(7 · (2 · 3 · 7)⌊k/3⌋) 0 0

0 1/(3 · (2 · 3 · 7)⌊k/3⌋) 0

 k = 1, 4, . . . 0 1/((2 · 3) · (2 · 3 · 7)⌊k/3⌋) 0
0 0 1/((2 · 7) · (2 · 3 · 7)⌊k/3⌋)

1/((3 · 7) · (2 · 3 · 7)⌊k/3⌋) 0 0

 k = 2, 5, . . .1/(2 · 3 · 7)k/3 0 0
0 1/(2 · 3 · 7)k/3 0
0 0 1/(2 · 3 · 7)k/3

 k = 3, 6, . . .

(6)

The equation (6) implies that
(M−1N)k → 0, as k → ∞,

since ∣∣∣∣ 1

2 · 3 · 7

∣∣∣∣ < 1.

Therefore, we have that
xk+1 − x∗ = (M−1N)k(x1 − x∗)

so it implies that
xk+1 − x∗ → 0, as k → ∞,

which means we can use Jacobi Method to get the solution x∗ = A−1b.

(b) We have

L =

2 0 0
1 −7 0
0 1 −3

 , U =

0 0 1
0 0 0
0 0 0

 ,
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and

L−1 =

 1/2 0 0
1/(2 · 7) −1/7 0

1/(2 · 3 · 7) −1/(3 · 7) −1/3

 .

Thus,

L−1U =

0 0 1/2
0 0 1/(2 · 7)
0 0 1/(2 · 3 · 7)


(L−1U)2 =

0 0 1/(2 · (2 · 3 · 7))
0 0 1/((2 · 7) · (2 · 3 · 7))
0 0 1/(2 · 3 · 7)2


(L−1U)3 =

0 0 1/(2 · (2 · 3 · 7)2)
0 0 1/((2 · 7) · (2 · 3 · 7)2)
0 0 1/(2 · 3 · 7)3


and the general form

(L−1U)k =

0 0 1/(2 · (2 · 3 · 7)k−1)
0 0 1/((2 · 7) · (2 · 3 · 7)k−1)
0 0 1/(2 · 3 · 7)k

 ,

which implies that
(L−1U)k → 0, as k → ∞.

For the reason that (5) implies the convergence of Gauss-Seidel Method, we assume that there exists
a solution

x∗ = A−1b.

Therefore, the iteration
x(k+1) = L−1(b+ Ux(k))

becomes

x(k+1) =L−1(Ax∗ + Ux(k))

=L−1((L− U)x∗ + Ux(k))

=L−1(L− U)x∗ + L−1Ux(k)

=x∗ − L−1Ux∗ + L−1Ux(k)

=x∗ + L−1U(x(k) − x∗)

That is,

(x(k+1) − x∗) = L−1U(x(k) − x∗)

⇒(x(k+1) − x∗) = (L−1U)k(x(1) − x∗),

so
(L−1U)k → 0, as k → ∞

implies that
x(k+1) → x∗, as k → ∞.
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