
Numerical Methods 2022 — Midterm 1

Solutions

Problem 1 (5 pts). Consider the following value:

−13.375

Give the bit-string representation if we store it as an IEEE double precision number. You must explain
the details instead of just giving the bit string.

Solution.
The binary representation of 13.375 can be calculated as 1101.011, which is equal to 1.101011× 23.

Since IEEE double uses biased representation for the exponent, the stored value of that should be
3 + 1023 = 10000000010. Therefore, the IEEE double representation should be

1︸︷︷︸
sign

10000000010︸ ︷︷ ︸
exponent

101011

46︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

mantissa

.

Problem 2 (20 pts). Let us assume
β = 2

and rounding even. Give an example of two binary values x and y, so that two guard digits are not
enough to implement an exactly rounded operation for x− y. Note that in any place where rounding is
needed, you must consider rounding even.

Solution.
Suppose that p = 5. If we have

x = 1.1111× 24

and
y = 1.1001× 20,

the exactly operation for x− y is

x− y = 1.1111× 24 − 0.00011001× 24 = 1.11010111× 24.

This value is rounded to
1.1101× 24,

which is the output of the exactly round operation. However, when the two guard digits are applied,
the exact result of floating point subtract x− y becomes

1.111100× 24 − 0.000110× 24 = 1.110110× 24,

where is rounded to
1.1110× 24

in the computer.
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Problem 3 (15 pts). We discussed an example in the course slides to show that rounding even is better
than rounding up in calculating

(x	 y)⊕ y.

Can you give an example where rounding up is better than rounding even under one calculation of

(x	 y)⊕ y?

If not, please prove that rounding up cannot be better than rounding even. Let us assume β = 10, and
you can choose the value p of your floating-point system. Note that x and y can be negative numbers.

Solution.
Let us take p = 2. When x = −9.8 and y = 7× 10−1, we have the exactly result

x− y = −1.05× 101.

Thus, rounding up takes
x	 y = −1.1× 101,

and rounding even takes
x	 y = −1.0× 101.

After that, for rounding up, we take the calculation

(x	 y) + y = −1.1× 101 + 7× 10−1 = −1.03× 101

exactly, so rounding up takes
(x	 y)⊕ y = −1.0× 101.

For rounding even, since we take the calculation

(x	 y) + y = −1.0× 101 + 7× 10−1 = −9.3

exactly, rounding even takes
(x	 y)⊕ y = −9.3.

To compare these two rounding results, we have

|x− (−10)| = 0.2 < 0.5 = |x− (−9.3)|.

Thus, we have an example that rounding up is better than rounding even.

Problem 4 (25 pts). Consider the following matrix:

A =


1 4 −2/3 −2
1 4 −1 −1
4 12 −8 4
2 8 0 4


Please conduct pivoted LU factorization on A to answer the following questions. Choose the pivot that
has the largest absolute value.
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(a) (10 pts) Give
P1,M1, P2,M2, P3,M3, U

such that
M3P3M2P2M1P1A = U.

Hint: The calculated U should only contain integers.

(b) (10 pts) Following (a), what are the P and L such that PA = LU?

(c) (5 pts) Using the P,L, U obtained from (b), find the solution x for the linear system

Ax =


1
0
0
0


by solving two triangular systems.

Solution.

(a) Step 1. Exchange the first and third row since 4 is has the largest absolute value:

P1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , P1A =


4 12 −8 4
1 4 −1 −1
1 4 −2/3 −2
2 8 0 4


Step 2. Do Gaussian elimination on the first column:

M1 =


1 0 0 0
−1/4 1 0 0
−1/4 0 1 0
−1/2 0 0 1

 ,M1P1A =


4 12 −8 4
0 1 1 −2
0 1 4/3 −3
0 2 4 2


Step 3. Exchange row 2 and 4 since 2 is larger:

P2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , P2M1P1A =


4 12 −8 4
0 2 4 2
0 1 4/3 −3
0 1 1 −2


Step 4. Do Gaussian elimination on column 2:

M2 =


1 0 0 0
0 1 0 0
0 −1/2 1 0
0 −1/2 0 1

 ,M2P2M1P1A =


4 12 −8 4
0 2 4 2
0 0 −2/3 −4
0 0 −1 −3


Step 5. Exchange row 3 and 4 since −1 is larger in absolute value:

P3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , P3M2P2M1P1A =


4 12 −8 4
0 2 4 2
0 0 −1 −3
0 0 −2/3 −4
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Step 6. Do Gaussian elimination on column 3:

M3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2/3 1

 ,M3P3M2P2M1P1A =


4 12 −8 4
0 2 4 2
0 0 −1 −3
0 0 0 −2

 = U

(b) We have

P = P3P2P1 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 .
According to slide “linear LU3”, L can be calculated as[

(P3P2M
−1
1 ):,1 (P3M

−1
2 ):,2 (M−1

3 ):,3 I:,4
]

=


1 0 0 0

1/2 1 0 0
1/4 1/2 1 0
1/4 1/2 2/3 1


where M−1

1 ,M−1
2 and M−1

3 can be obtained by flipping the sign of the off-diagonal element of M1,M2

and M3, respectively.

(c) Because Ax = b ⇐⇒ PAx = Pb ⇐⇒ L(Ux) = Pb. First, we solve
1 0 0 0

1/2 1 0 0
1/4 1/2 1 0
1/4 1/2 2/3 1

 y = Pb =


0
0
0
1

 .

Trivially, we get y =


0
0
0
1

 by forward substitution. Then, we solve


4 12 −8 4
0 2 4 2
0 0 −1 −3
0 0 0 −2

x = y =


0
0
0
1

 .
by back substitution and get

x4 = −0.5

x3 = −(0 +−3

2
) = 1.5

x2 =
0− 2× −1

2
− 4× 1.5

2
= −2.5

x1 =
0− 4×−0.5 + 8× 1.5− 12×−2.5

4
= 11.
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Problem 5 (35 pts). Consider the following matrix:

A =

 1 −1 1
−1 1 −1
1 −1 2


(a) (5 pts) Prove that A is positive semi-definite but not positive definite. If you calculate A’s eigen-

values, you should calculate it by hand and show the details.

(b) (5 pts) Perform Cholesky factorization (the outer product form) and show that the procedure fails
at a certain point.

(c) (5 pts) On page 5 of our slide “linear chol1”, we assumed that

B − vvT

α
= L̄L̄T . (1)

When the procedure in (b) fails, if you can observe an L̄ satisfying (1), can you still generate an L
such that A = LLT ?

(d) (5 pts) Is the L satisfying A = LLT unique? If your answer is yes, provide a proof. Otherwise, give
matrices L1 6= L2 such that A = L1L

T
1 = L2L

T
2 .

(e) (10 pts) To fix the problem in (b), we can consider a “pivoted” version of Cholesky factorization.
In this new verion, at each stage we move the largest diagonal element to the (1, 1) position of
the remaining sub-matrix. Note that this can be done by P TAP where P is a permutation matrix.
Please redo Cholesky factorization with pivoting and show the details in each step.

Note that the procedure stops when all remaining diagonal elements are zeros. By this procedure,
the obtained L has the largest number of non-zero diagonal elements.

(f) (5 pts) Is it possible that overall we have P TAP = LLT for some permutation matrix P where L is
the matrix obtained in (e)?

Solution.

(a) We can find the eigenvalues by solving for λs satisfying det(A− λI) = 0:

det(

1− λ −1 1
−1 1− λ −1
1 −1 2− λ

) = 0

⇐⇒ (1− λ)2(2− λ) + 2− 2(1− λ)− (2− λ) = 0

⇐⇒ (2− λ)(λ2 − 2λ+ 1− 1) + 2λ = 0

⇐⇒ (2− λ)λ(λ− 2) + 2λ = 0

⇐⇒ λ(λ2 − 4λ+ 2) = 0

Solving for λ, we get the eigenvalues of A are 0 and 2 ±
√

2. Since they are all non-negative, A is
positive semi-definite. However, there is a zero eigenvalue, so A is not positive definite.

Alternative solution:
It can be observed that

A =

 1 −1 1
−1 1 −1
1 −1 1

+

0 0 0
0 0 0
0 0 1

 =

 1
−1
1

 [1 −1 1
]

+

0 0 0
0 0 0
0 0 1

 .
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Therefore, for any vector v =
[
v1 v2 v3

]
, we have vTAv = (v1 − v2 + v3)

2 + v23 ≥ 0. By definition,
A is positive semi-definite. Further, consider the case where v1 = v2 6= 0 and v3 = 0. We have
vTAv = 0 for some v 6= 0. Thus A is not positive definite.

(b) First, we calculate the first column of L:

L11 =
√
α =

√
A11 =1

L2:3,1 = v/
√
α = A2:3,1 =

[
−1
1

]
A(2) = B − vvT

α
=

[
0 0
0 1

]
Then, we run into a divide-by-zero problem when calculating the factorization for the sub-matrix
A(2):

α2 =
√

0 = 0

v2/α2 = [0]/0

Therefore, the procedure fails.

(c) We can oberve that B − vvT

α
can actually be factorized:[

0 0
0 1

]
=

[
0 0
0 1

] [
0 0
0 1

]T
.

Therefore, (1) can be satisfied with L̄ =

[
0 0
0 1

]
. According to page 5 of slide “linear chol1”, we can

combine L̄ with the first column we calculated in (b) to obtain a full Cholesky factorization for A:

L =

 1 0 0
−1 0 0
1 0 1

 .
(d) Continuing from (c), we can observe that the matrix L̄ is not unique since

[
0 0
1 0

]
also satisfies

B − vvT

α
= L̄ L̄T . Combining the result for the first column in (c), we get another factorization for

A:

L2 =

 1 0 0
−1 0 0
1 1 0

 6= L

(e) Step 1: Since 2 is the largest diagonal element we use P1 =

0 0 1
0 1 0
1 0 0

 to move it to the top left

corner:

A(1) = P T
1 AP1 =

 2 −1 1
−1 1 −1
1 −1 1
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Let v and α be A
(1)
1,1 and A

(1)
2:3,1, respectively. Then

L11 =
√
α =
√

2

L2:3,1 =v/
√
α =

[
−1√
2
1√
2

]

A(2) =A
(1)
2:3,2:3 −

vvT

α
=

[
1/2 −1/2
−1/2 1/2

]
Step 2: Applying the same rule to the sub-matrix A(2), we use P2 = I to permute A(2) (no change

since the diagonal are all 1
2
). Let v and α be A

(2)
1,1 and A

(2)
2,1, we get

L22 =
√
α = 1/

√
2

L32 =v/
√
α = −1/

√
2

A(3) =
[
1/2
]
−
[
1/2
]

=
[
0
]

= L33.

We get the factorization L =


√

2 0 0
−1√
2

1√
2

0
1√
2

−1√
2

0

.

(f) Using the L from (e), we get

LLT =

 2 −1 1
−1 1 −1
1 −1 1

 = P TAP

where P =

0 0 1
0 1 0
1 0 0

. Therefore, it is possible (and generally right, although we do not prove it

here).
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