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@ Sparse matrices: most elements are zero
@ They are common in engineering applications

@ Without storing zeros, we can handle very large
matrices

@ An example

10 0 2
340 5
A_6078
0 0 10 11
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Storage schemes:

There are different ways to store sparse matrices

Coordinate format

a 136471
arow_ind 1 2 3 2 3 4
acol_ind 111233

2 1
1
4

BN O1
0 00
DD

Indices may not be well ordered

Is it easy to do operations? A+ B, Ax

A+ B: if (i,)) are not ordered, difficult
y = Ax:
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for_l = 1:nnz

i = arow_ind (1)

j = acol_ind(1)

y(i) = y(1) + a(@)*x(j)
end

@ nnz: usually used to represent the number of
nonzeros

@ x: vector in dense format

@ In general we directly store a vector without using
sparse format

@ Access one column
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for 1 = 1:nnz
if acol_ind(l) == i
x(arow_ind (1)) = a(l)
end
end

Cost: O(nnz)

When do we need to access a column? An example
is to solve Lx = b

b1 b X2 b,
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b b1
Sl X
bn lnl
@ A format that has the easy access of one column:

Compressed column format

a 13647 10 2
arow_ind 1 2 3 2 3 4 1
acol_ptr 1 457 11

@ jth column:

58 11
23 4

from a(acol ptr(j)) to a(acol ptr(j+1)-1)
Example: 3rd column
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acol_ptr(3)
acol_prr(4)
a(s) =7
a(6) = 10

@ nnz = acol ptr(n+l) -1

5
7

acol ptr contains n+ 1 elements
e C=A+8B
for j = 1:n
get A’s jth column

et B’s jth column

o0 a vector addition
end

@ C is still with column format
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o y=Ax=A1x1+ -+ A X,
for j = 1:n
for 1 = acol_ptr(j):acol_ptr(j+1)-1
y(arow_ind(1)) = y(arow_ind(1)) +
a(1)*x(j)
end
end

@ Row indices of the same column may not be sorted

a 63147 1025 8 11
arow_ind 321234 123 4
acol_ptr 1 4 5 7 11

o C = AB is similar
@ Access one column is easy
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@ Access one row is very difficult

@ Compressed row format

10 0 2
34 0 5
A= 60 7 8
0 0 10 11
a 12345673810 11
acol_ind 141241343 4
arow_ptr 1 3 6 9 11
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@ An issue is that some languages start arrays with 0
but some with 1.
@ In a C implementation we have

a 13647 1025 8 11
arow_ind 0 1 2123 012 3
acol_ptr 0 3 4 6 10

@ There are many variations of sparse structures.

e It's difficult to have standard sparse libraries as
different formats are suitable for different matrices
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@ This is a more advanced topic
@ Factorization generates fill-ins

fill-ins: new nonzero positions
@ Consider the following Matlab program
A = sprandsym(200, 0.05, 0.01, 1) ;
L = chol(A)’ ;

spy(A) ;
pggnt —-deps A

spy (L) ;
pggnt -deps L

@ 0.05: density
0.01: 1/(condition number)
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1: type of matrix, 1 gives a matrix with
1/(condition number) exactly 0.01

@ spy: draw the sparsity pattern
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@ Clearly L is denser
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3212
2400
A= 1 05 0}’
2 006
1.7321 0 0 0
1.1547 1.6330 0 0

0.5774 —0.4082 2.1213 0
1.1547 —0.8165 —0.4714 1.9437
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24495 0 0 0
0 22361 0 0
chol(PAP") = 0 0 2.0000 O

0.8165 0.4472 1.0000 1.0646

e chol(PAPT) is sparser

Ax=b
(PAPT)Px = Pb

Get Px first and then x
@ There are different ways of permutations
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@ For example, MATLAB provides methods such as
o Column Count Reordering
o Reverse Cuthill-McKee Reordering
o Minimum Degree Reordering
o Nested Dissection Permutation

@ Finding the ordering with the least entries in the
factorization = minimum fill-in problem
@ This is a difficult problem

@ However, minimum fill-in may not be the best: we
need to consider the numerical stability,
implementation efforts, etc
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@ Subsequently we will discuss iterative methods,
which do not have this issue of fill-ins
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