Sparse Matrices: Storage Schemes I

- Sparse matrices: most elements are zero
- They are common in engineering applications
- Without storing zeros, we can handle very large matrices
- An example

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 3 & 4 & 0 & 5 \\ 6 & 0 & 7 & 8 \\ 0 & 0 & 10 & 11 \end{bmatrix}$$

Sparse Matrices: Storage Schemes II

• Storage schemes:

There are different ways to store sparse matrices

Coordinate format

- Indices may not be well ordered
- Is it easy to do operations? A + B, Ax
- A + B: if (i, j) are not ordered, difficult
- y = Ax:

Sparse Matrices: Storage Schemes III

```
for l = 1:nnz
   i = arow_ind(l)
   j = acol_ind(l)
   y(i) = y(i) + a(l)*x(j)
end
```

- nnz: usually used to represent the number of nonzeros
- x: vector in dense format
- In general we directly store a vector without using sparse format
- Access one column

Sparse Matrices: Storage Schemes IV

```
for l = 1:nnz
   if acol_ind(l) == i
        x(arow_ind(l)) = a(l)
   end
end
```

Cost: O(nnz)

When do we need to access a column? An example is to solve Lx = b

$$\begin{bmatrix} I_{11} & & & & \\ I_{21} & I_{22} & & & \\ \vdots & & \ddots & & \\ I_{n1} & I_{n2} & & I_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Sparse Matrices: Storage Schemes V

$$\begin{bmatrix} b_2 \\ \vdots \\ b_n \end{bmatrix} - x_1 \begin{bmatrix} I_{21} \\ \vdots \\ I_{n1} \end{bmatrix}$$

• A format that has the easy access of one column: Compressed column format

• *j*th column:

from a(acol_ptr(j)) to a(acol_ptr(j+1)-1)

Example: 3rd column

Sparse Matrices: Storage Schemes VI

```
acol_ptr(3) = 5
acol_prr(4) = 7
a(5) = 7
a(6) = 10
```

• nnz = acol_ptr(n+1) - 1
acol_ptr contains n + 1 elements

for j = 1:n
 get A's jth column
 get B's jth column
 do a vector addition
end

• C is still with column format

Sparse Matrices: Storage Schemes VII

```
• y = Ax = A_{:,1}x_1 + \cdots + A_{:,n}x_n

for j = 1:n

for l = acol_ptr(j):acol_ptr(j+1)-1

y(arow_ind(1)) = y(arow_ind(1)) +

a(1)*x(j)

end

end
```

- Row indices of the same column may not be sorted
 a 6 3 1 4 7 10 2 5 8 11
 arow_ind 3 2 1 2 3 4 1 2 3 4
 acol_ptr 1 4 5 7 11
- C = AB is similar
- Access one column is easy

Sparse Matrices: Storage Schemes VIII

- Access one row is very difficult
- Compressed row format

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 3 & 4 & 0 & 5 \\ 6 & 0 & 7 & 8 \\ 0 & 0 & 10 & 11 \end{bmatrix}$$

```
a 1 2 3 4 5 6 7 8 10 11 acol_ind 1 4 1 2 4 1 3 4 3 4 arow_ptr 1 3 6 9 11
```

Sparse Matrices: Storage Schemes IX

- An issue is that some languages start arrays with 0 but some with 1.
- In a C implementation we have
 a 1 3 6 4 7 10 2 5 8 11
 arow_ind 0 1 2 1 2 3 0 1 2 3
 acol_ptr 0 3 4 6 10
- There are many variations of sparse structures.
- It's difficult to have standard sparse libraries as different formats are suitable for different matrices

Sparse Matrix and Factorization I

- This is a more advanced topic
- Factorization generates fill-ins fill-ins: new nonzero positions
- Consider the following Matlab program

```
A = sprandsym(200, 0.05, 0.01, 1);
L = chol(A);
spy(A);
print -deps A
spy(L);
print -deps L
```

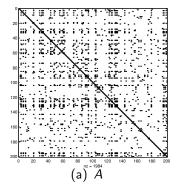
• 0.05: density

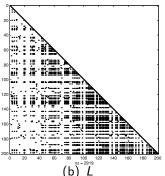
0.01: 1/(condition number)

Sparse Matrix and Factorization II

1: type of matrix, 1 gives a matrix with 1/(condition number) exactly 0.01

• spy: draw the sparsity pattern





Sparse Matrix and Factorization III

• Clearly *L* is denser

Permutation and Reordering I

$$A = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 2 & 4 & 0 & 0 \\ 1 & 0 & 5 & 0 \\ 2 & 0 & 0 & 6 \end{bmatrix},$$

$$chol(A) = \begin{bmatrix} 1.7321 & 0 & 0 & 0 \\ 1.1547 & 1.6330 & 0 & 0 \\ 0.5774 & -0.4082 & 2.1213 & 0 \\ 1.1547 & -0.8165 & -0.4714 & 1.9437 \end{bmatrix}$$

Permutation and Reordering II

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, AP^{T} = \begin{bmatrix} 2 & 1 & 2 & 3 \\ 0 & 0 & 4 & 2 \\ 0 & 5 & 0 & 1 \\ 6 & 0 & 0 & 2 \end{bmatrix}$$

Permutation and Reordering III

$$\begin{array}{l}
PAP^{T} \\
= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & 3 \\ 0 & 0 & 4 & 2 \\ 0 & 5 & 0 & 1 \\ 6 & 0 & 0 & 2 \end{bmatrix} \\
= \begin{bmatrix} 6 & 0 & 0 & 2 \\ 0 & 5 & 0 & 1 \\ 0 & 0 & 4 & 2 \\ 2 & 1 & 2 & 3 \end{bmatrix}$$

Permutation and Reordering IV

$$\mathsf{chol}(PAP^T) = \begin{bmatrix} 2.4495 & 0 & 0 & 0 \\ 0 & 2.2361 & 0 & 0 \\ 0 & 0 & 2.0000 & 0 \\ 0.8165 & 0.4472 & 1.0000 & 1.0646 \end{bmatrix}$$

• $chol(PAP^T)$ is sparser

$$Ax = b$$
$$(PAP^{T})Px = Pb$$

Get Px first and then x

• There are different ways of permutations

Permutation and Reordering V

- For example, MATLAB provides methods such as
 - Column Count Reordering
 - Reverse Cuthill-McKee Reordering
 - Minimum Degree Reordering
 - Nested Dissection Permutation
- Finding the ordering with the least entries in the factorization ⇒ minimum fill-in problem
- This is a difficult problem
- However, minimum fill-in may not be the best: we need to consider the numerical stability, implementation efforts, etc

Permutation and Reordering VI

 Subsequently we will discuss iterative methods, which do not have this issue of fill-ins