-
Sparse Matrices: Storage Schemes |

@ Sparse matrices: most elements are zero
@ They are common in engineering applications

@ Without storing zeros, we can handle very large
matrices

@ An example

10 0 2
340 5
A_6078
0 0 10 11

1/18

-
Sparse Matrices: Storage Schemes ||

Storage schemes:

There are different ways to store sparse matrices

Coordinate format

a 136471
arow_ind 1 2 3 2 3 4
acol_ind 111233

2 1
1
4

BN O1
0 00
DD

Indices may not be well ordered

Is it easy to do operations? A+ B, Ax

A+ B: if (i,)) are not ordered, difficult
y = Ax:

2/18

-
Sparse Matrices: Storage Schemes Il

for_l = 1:nnz

i = arow_ind (1)

j = acol_ind(1)

y(i) = y(1) + a(@)*x(j)
end

@ nnz: usually used to represent the number of
nonzeros

@ x: vector in dense format

@ In general we directly store a vector without using
sparse format

@ Access one column

3/18

-
Sparse Matrices: Storage Schemes IV

for 1 = 1:nnz
if acol_ind(l) == i
x(arow_ind (1)) = a(l)
end
end

Cost: O(nnz)

When do we need to access a column? An example
is to solve Lx = b

b1 b X2 b,

4/18

-
Sparse Matrices: Storage Schemes V

b b1
Sl X
bn lnl
@ A format that has the easy access of one column:

Compressed column format

a 13647 10 2
arow_ind 1 2 3 2 3 4 1
acol_ptr 1 457 11

@ jth column:

58 11
23 4

from a(acol ptr(j)) to a(acol ptr(j+1)-1)
Example: 3rd column

5/18

-
Sparse Matrices: Storage Schemes VI

acol_ptr(3)
acol_prr(4)
a(s) =7
a(6) = 10

@ nnz = acol ptr(n+l) -1

5
7

acol ptr contains n+ 1 elements
e C=A+8B
for j = 1:n
get A’s jth column

et B’s jth column

o0 a vector addition
end

@ C is still with column format

6/18

-
Sparse Matrices: Storage Schemes VII

o y=Ax=A1x1+ -+ A X,
for j = 1:n
for 1 = acol_ptr(j):acol_ptr(j+1)-1
y(arow_ind(1)) = y(arow_ind(1)) +
a(1)*x(j)
end
end

@ Row indices of the same column may not be sorted

a 63147 1025 8 11
arow_ind 321234 123 4
acol_ptr 1 4 5 7 11

o C = AB is similar
@ Access one column is easy

7/18

-
Sparse Matrices: Storage Schemes VIII

@ Access one row is very difficult

@ Compressed row format

10 0 2
34 0 5
A= 60 7 8
0 0 10 11
a 12345673810 11
acol_ind 141241343 4
arow_ptr 1 3 6 9 11

8/18

-
Sparse Matrices: Storage Schemes IX

@ An issue is that some languages start arrays with 0
but some with 1.
@ In a C implementation we have

a 13647 1025 8 11
arow_ind 0 1 2123 012 3
acol_ptr 0 3 4 6 10

@ There are many variations of sparse structures.

e It's difficult to have standard sparse libraries as
different formats are suitable for different matrices

Chih-Jen Lin (National Taiwan Univ.) 9/18

-
Sparse Matrix and Factorization |

@ This is a more advanced topic
@ Factorization generates fill-ins

fill-ins: new nonzero positions
@ Consider the following Matlab program
A = sprandsym(200, 0.05, 0.01, 1) ;
L = chol(A)’ ;

spy(A) ;
pggnt —-deps A

spy (L) ;
pggnt -deps L

@ 0.05: density
0.01: 1/(condition number)

Chih-Jen Lin (National Taiwan Univ.) 10/18

-
Sparse Matrix and Factorization ||

1: type of matrix, 1 gives a matrix with
1/(condition number) exactly 0.01

@ spy: draw the sparsity pattern

4 20fe1

Hi A
- veod @ v
o

1a0f,,.
160k y

180f="

-y a00lttte
0 20 40 60 80 100 120 140 160 180 200
nz=2919

200t RN S)
0 20 40 60 80 100 120 140 160 180 200
nz=1984

(a) A (b) L
10715

|
Sparse Matrix and Factorization IlI

@ Clearly L is denser

Chih-Jen Lin (National Taiwan Univ.) 12/18

-
Permutation and Reordering |

3212
2400
A= 1 05 0}’
2 006
1.7321 0 0 0
1.1547 1.6330 0 0

0.5774 —0.4082 2.1213 0
1.1547 —0.8165 —0.4714 1.9437

Chih-Jen Lin (National Taiwan Univ.) 13/18

-
Permutation and Reordering ||

0
0
0
1

O~ OO
O O = O
OO O
S O ON
O 01O -
SQSO A~
N = DN W

Chih-Jen Lin (National Taiwan Univ.) 14 /18

Permutation and Reordering |l|

2123

15/18

iv.)

=)
g
=
&
=
=
o
=
&
=

Chih-Jen Lin

-
Permutation and Reordering |V

24495 0 0 0
0 22361 0 0
chol(PAP") = 0 0 2.0000 O

0.8165 0.4472 1.0000 1.0646

e chol(PAPT) is sparser

Ax=b
(PAPT)Px = Pb

Get Px first and then x
@ There are different ways of permutations

Chih-Jen Lin (National Taiwan Univ.) 16 /18

-
Permutation and Reordering V

@ For example, MATLAB provides methods such as
o Column Count Reordering
o Reverse Cuthill-McKee Reordering
o Minimum Degree Reordering
o Nested Dissection Permutation

@ Finding the ordering with the least entries in the
factorization = minimum fill-in problem
@ This is a difficult problem

@ However, minimum fill-in may not be the best: we
need to consider the numerical stability,
implementation efforts, etc

Chih-Jen Lin (National Taiwan Univ.) 17 /18

-
Permutation and Reordering VI

@ Subsequently we will discuss iterative methods,
which do not have this issue of fill-ins

18/18

