-
Example: Same Code but Different

Architectures |

@ Let's start with a simple example
#include <stdio.h>

int main()

{

float a = 123.123;
printf("%.10f\n", a);
printf ("%.10f\n", a*a);

a = 123.125;

1/15

Example: Same Code but Different
Architectures Il

printf("%.10f\n", a);
printf ("%.10f\n", axa);

+

@ Results are

Chih-Jen Lin (National Taiwan Univ.)

2/15

-
Example: Same Code but Different
Architectures ||

$gcc test.c;./a.out
123.1230010986
15159.2734375000
123.1250000000
15159.7656250000

$gcc -m32 test.c;./a.out
123.1230010986
15159.2733995339
123.1250000000
15159.7656250000

Chih-Jen Lin (National Taiwan Univ.) 3/15

-
Example: Same Code but Different
Architectures IV

@ -m 32 generates code for a 32-bit environment
(because we don't have a 32-bit machine)

@ Therefore, same code gives different results under
32 and 64-bit environments

o Why?

@ On 32 bit, 387 floating-point coprocessor is used.
From gcc manual, “The temporary results are
computed in 80-bit precision instead of the precision
specified by the type, resulting in slightly different
results compared to most of other chips.”

4/15

-
Example: Same Code but Different
Architectures V

@ In other words, they somehow violate IEEE standard

@ The number 123.123 has infinite digits after
transformed to binary

@ Compiler options can help to make things more
consistent.

@ For example, we use -mfpmath=387 to let the
64-bit machine run like a 32-bit one:

5/15

-
Example: Same Code but Different
Architectures VI

$gcc -mfpmath=387 test.c;./a.out
123.1230010986
15159.2733995339
123.1250000000
15159.7656250000

@ For example, we use —-ffloat-store to make the
32-bit machine like a 64-bit one Manual of this
option said: “Do not store floating-point variables in
registers, and inhibit other options that might

Chih-Jen Lin (National Taiwan Univ.) 6/15

Example: Same Code but Different
Architectures VII

change whether a floating-point value is taken from
a register or memory.”

$gcc -ffloat-store test.c;./a.out
123.1230010986

15159.2734375000

123.1250000000

15159.7656250000

$gcc -ffloat-store -m32 test.c;./a.out
123.1230010986

15159.2734375000

Chih-Jen Lin (National Taiwan Univ.) 7/15

-
Example: Same Code but Different
Architectures VIII

123.1250000000
15159.7656250000

Chih-Jen Lin (National Taiwan Univ.) 8/15

-
Example: Order of Operations |

@ For the same code, other issues such as order of
operations can also affect results.

@ Consider running a real example using a machine
learning software LIBSVM (https:
//www.csie.ntu.edu.tw/~cjlin/libsvm/)

e OO0:

9/15

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

-
Example: Order of Operations Il

$ g++ -00 svm-train.c svm.cpp -o svm-train -
$./svm-train -c 100 -e 0.00001 heart_scale
........ . Lk

optimization finished, #iter = 2872
nu = 0.148045

obj = -2526.925470, rho = 1.145512
nSV = 107, nBSV = 9

Total nSV = 107

@ Ofast:

10/15

-
Example: Order of Operations Il

$ g++ -Ofast svm-train.c svm.cpp -o svm-tra:

$./svm-train -c 100 -e 0.00001 heart_scale
........ X, . %

optimization finished, #iter = 2910
nu = 0.148045

obj -2526.925470, rho = 1.145510
nSV = 107, nBSV = 9

Total nSV = 107

@ They are different

11/15

-
Example: Order of Operations IV

@ Some compiler optimizations may change the order
of operations

@ On default settings for 64-bit environments, OO0 to
O3 produce the same results

@ From gcc manual, -0fast “disregards strict
standards compliance”

@ Thus order of operations become different

@ -mfpmath=387 is even more sensitive to
optimizations
e OO:

Chih-Jen Lin (National Taiwan Univ.) 12 /15

-
Example: Order of Operations V

$ g++ -00 -mfpmath=387 svm-train.c svm.cpp -
$./svm-train -c 100 -e 0.00001 heart_scale
........ . Lk

optimization finished, #iter = 2941
nu = 0.148045

obj = -2526.925470, rho = 1.145513
nSV = 107, nBSV = 9

Total nSV = 107

e O1I:

13/15

-
Example: Order of Operations VI

$ g++ -01 -mfpmath=387 svm-train.c svm.cpp -
$./svm-train -c 100 -e 0.00001 heart_scale
........ *, Lk

optimization finished, #iter = 2826
nu = 0.148045

obj = -2526.925470, rho = 1.145510
nSV = 107, nBSV = 9

Total nSV = 107

Chih-Jen Lin (National Taiwan Univ.) 14 /15

-
Example: Order of Operations VII

@ To produce the same results with -mfpmath=387,
we need to disable all optimizations due to more
complicated interactions with registers and memory.
See https://gcc.gnu.org/wiki/x87note for more
details.

15/15

