-
Signed zero |

@ Why do we have +0 and —0 7
First, it is available (1 bit for sign)
if no sign, 1/(1/x)) = x fails when x = +00

x=00,1/x=0,1/0 = 400
x=-00,1/x=0,1/0 = 400

@ Compare +0 and —0:
if (x == 0)
|IEEE defines +0 = —0

Chih-Jen Lin (National Taiwan Univ.) 1/14

-
Signed zero |l

o IEEE:
3 x (+0) =+40,+0/(-3) = -0
@ +0 useful in the following situations:

| _J —@ x=0
%X =19 NaN x <0

A small underflow negative number = log x should
be NaN

Chih-Jen Lin (National Taiwan Univ.) 2/14

-
Signed zero Il

@ Definition: underflow means a value smaller than
the smallest floating-point number occurs

@ x underflow = round to 0, if no sign, log x is —oo
but not NaN

e With +£0, we have

—o00 x =40
logx =< NaN x = -0
NaN x <0

Positive underflow = round to +0

3/14

Chih-Jen Lin (National Taiwan Univ.)

-
Signed zero IV

@ Useful in complex arithmetic

Vi/z and 1)z
z=-1,/1/—-1=/-1=i1/\/-1=1/i= —i
= 1)z #1//z

@ This happens because square root is multi-valued.

i?=(—i)?=-1

Chih-Jen Lin (National Taiwan Univ.) 4/14

-
Signed zero V

@ However, by some restrictions (or ways of
calculation), they can be equal

z=—-1=-1+40i,
1/z=1/(-1+0i) = -1+ (—0)i
o)
1/z=+/—14+(-0)i=—i
= —0 is useful
@ Disadvantage of +0 and —O:
x =y << 1/x=1/y is destroyed

Chih-Jen Lin (National Taiwan Univ.) 5/14

-
Signed zero VI

x =0,y = —0= x =y under IEEE
1/x =+00,1/y = —00, 400 # —00

@ There are always pros and cons for floating-point
design

Chih-Jen Lin (National Taiwan Univ.) 6/14

Denormalized number |
@ Consider

f=10,p =3, emin = —98,x = 6.87 x 107,
y =6.81 x 1077

@ x,y are ok but x — y = 0.6 x 107° rounded to 0,
even though x # y

@ How important to preserve
x=y&x—y=0

o if (x #7y) {z = 1/(x-y);}

7/14

R
Denormalized number ||

The statement is true, but z becomes oo
Tracking such bugs is frustrating
o |EEE uses denormalized numbers to guarantee

x=y&<x—y=0

Details of how this is done are not discussed here
@ Most controversial part in IEEE standard
It caused long delay of the standard

e If denormalized number is used, 0.6 x 10~ is also
a floating-point number

Chih-Jen Lin (National Taiwan Univ.) 8/14

R
Denormalized number Il

@ Remember we do not store 1 of 1.d---d
@ How to represent denormalized numbers ?

Recall for valid value, e > e, and we have
l.d---d x2¢

@ For denormalized numbers, we let e = ¢, — 1 and
the corresponding value be

0.d---dx2%1 =0.d---d x 26

Chih-Jen Lin (National Taiwan Univ.) 9/14

R
Denormalized number |V

e Why not
1.d---d x 21

Then we cannot represent

0.0x...x x 26mn

Example: 6.87 x 107%" — 6.81 x 107" = underflow
due to cancellation

10/14

R
Denormalized number V

@ An example of using denormalized numbers

a+bi (a+bi)(c—di)
c+di (c+di)(c—di)
ac+bd bc—ad.
c2—|—d2+c2+d21

If ¢ or d > /BB%/%2 = overflow

@ Definition: overflow means a number larger than the
maximal floating-point number occurs

Chih-Jen Lin (National Taiwan Univ.) 11/14

R
Denormalized number VI

@ Smith’s formula

. a+b(d/c b—a(d/c) - .
a-+ bi _ cid%d?c% + c+dEd§c§’ if (‘d| < ‘C|)
- b+a(c/d —a+b(c . .
¢+ di dic(céd) - d:c((c//d))’ if (ld] = [cl)

This avoids overflow

@ However, using Smith's formula, some issues may
occur without denormalized numbers

12/14

R
Denormalized number VII

If

a=2x108 p=1x10"% c=4x10"%,
d=2x10""%

then

d/c=05c+d(d/c)=5x10"%,
b(d/c) =1x 1072 x 0.5 =0
a+b(d/c)=2x 10"

Solution = 0.4, wrong

Chih-Jen Lin (National Taiwan Univ.) 13 /14

R
Denormalized number VIII

If denormalized numbers are used, 0.5 x 10728 can
be stored,

a+b(d/c)=25x10"" =05

the correct answer

@ Usually hardware does not support denormalized
numbers directly

Using software to simulate
@ Programs may be slow if a lot of underflow

Chih-Jen Lin (National Taiwan Univ.) 14 /14

