Signed zero I

• Why do we have +0 and -0 ? First, it is available (1 bit for sign) if no sign, 1/(1/x)) = x fails when $x = \pm \infty$

$$x = \infty, 1/x = 0, 1/0 = +\infty$$

 $x = -\infty, 1/x = 0, 1/0 = +\infty$

• Compare +0 and -0:

IEEE defines +0 = -0

Signed zero II

• IEEE:

$$3 \times (+0) = +0, +0/(-3) = -0$$

• ± 0 useful in the following situations:

$$\log x \equiv \begin{cases} -\infty & x = 0 \\ \text{NaN} & x < 0 \end{cases}$$

A small underflow negative number $\Rightarrow \log x$ should be NaN

Signed zero III

- Definition: underflow means a value smaller than the smallest floating-point number occurs
- x underflow \Rightarrow round to 0, if no sign, $\log x$ is $-\infty$ but not NaN
- With ± 0 , we have

$$\log x = \begin{cases} -\infty & x = +0\\ \text{NaN} & x = -0\\ \text{NaN} & x < 0 \end{cases}$$

Positive underflow \Rightarrow round to +0

Signed zero IV

• Useful in complex arithmetic

$$\sqrt{1/z}$$
 and $1/\sqrt{z}$ $z=-1,\sqrt{1/-1}=\sqrt{-1}=i,1/\sqrt{-1}=1/i=-i$ $\Rightarrow \sqrt{1/z} \neq 1/\sqrt{z}$

This happens because square root is multi-valued.

$$i^2 = (-i)^2 = -1$$

Signed zero V

 However, by some restrictions (or ways of calculation), they can be equal

$$z = -1 = -1 + 0i,$$

 $1/z = 1/(-1 + 0i) = -1 + (-0)i$

SO

$$\sqrt{1/z} = \sqrt{-1 + (-0)i} = -i$$

 \Rightarrow -0 is useful

• Disadvantage of +0 and -0:

$$x = y \Leftrightarrow 1/x = 1/y$$
 is destroyed

Signed zero VI

$$x = 0, y = -0 \Rightarrow x = y$$
 under IEEE $1/x = +\infty, 1/y = -\infty, +\infty \neq -\infty$

There are always pros and cons for floating-point design

Denormalized number I

Consider

$$\beta = 10, p = 3, e_{\min} = -98, x = 6.87 \times 10^{-97},$$

 $y = 6.81 \times 10^{-97}$

- x, y are ok but $x y = 0.6 \times 10^{-98}$ rounded to 0, even though $x \neq y$
- How important to preserve

$$x = y \Leftrightarrow x - y = 0$$

• if $(x \neq y) \{z = 1/(x-y);\}$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かへで

Denormalized number II

The statement is true, but z becomes ∞ Tracking such bugs is frustrating

• IEEE uses denormalized numbers to guarantee

$$x = y \Leftrightarrow x - y = 0$$

Details of how this is done are not discussed here

- Most controversial part in IEEE standard
 It caused long delay of the standard
- If denormalized number is used, 0.6×10^{-98} is also a floating-point number

Denormalized number III

- Remember we do not store 1 of $1.d \cdots d$
- How to represent denormalized numbers ? Recall for valid value, $e \geq e_{\min}$ and we have $1.d \cdots d \times 2^e$
- ullet For denormalized numbers, we let $e=e_{\mathsf{min}}-1$ and the corresponding value be

$$0.d \cdots d \times 2^{e+1} = 0.d \cdots d \times 2^{e_{\min}}$$

Denormalized number IV

Why not

$$1.d \cdots d \times 2^{e_{\min}-1}$$

Then we cannot represent

$$0.0x \dots x \times 2^{e_{\min}}$$

Example: $6.87 \times 10^{-97} - 6.81 \times 10^{-97} \Rightarrow$ underflow due to cancellation

Denormalized number V

• An example of using denormalized numbers

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

If c or
$$d > \sqrt{\beta} \beta^{e_{\text{max}}/2} \Rightarrow \text{overflow}$$

 Definition: overflow means a number larger than the maximal floating-point number occurs

◆□▶◆□▶◆□▶◆□▶ ■ りへで

Denormalized number VI

Smith's formula

$$\frac{a+bi}{c+di} = \begin{cases} \frac{a+b(d/c)}{c+d(d/c)} + \frac{b-a(d/c)}{c+d(d/c)}i & \text{if } (|d| < |c|) \\ \frac{b+a(c/d)}{d+c(c/d)} + \frac{-a+b(c/d)}{d+c(c/d)}i & \text{if } (|d| \ge |c|) \end{cases}$$

This avoids overflow

 However, using Smith's formula, some issues may occur without denormalized numbers

Denormalized number VII

lf

$$a = 2 \times 10^{-98}, b = 1 \times 10^{-98}, c = 4 \times 10^{-98},$$

 $d = 2 \times 10^{-98}$

then

$$d/c = 0.5, c + d(d/c) = 5 \times 10^{-98},$$

 $b(d/c) = 1 \times 10^{-98} \times 0.5 = 0$
 $a + b(d/c) = 2 \times 10^{-98}$

Solution = 0.4, wrong

Denormalized number VIII

If denormalized numbers are used, 0.5×10^{-98} can be stored,

$$a + b(d/c) = 2.5 \times 10^{-98} \Rightarrow 0.5$$

the correct answer

- Usually hardware does not support denormalized numbers directly
 Using software to simulate
- Programs may be slow if a lot of underflow