Floating-point operations I

- The science of floating-point arithmetics
- IEEE standard
- Reference

What every computer scientist should know about floating-point arithmetic, ACM computing survey, 1991
Why learn more about floating-point operations I

Example:

- A one-variable problem

\[
\min_x f(x) \quad \text{subject to} \quad x \geq 0
\]

- In your program, should you set an upper bound of \(x \)?
- \(x \) in your program may be wrongly increased to \(\infty \)
Why learn more about floating-point operations II

- What is the largest representable number in the computer?
- Is there anything called infinity?

Example:
- A ten-variable problem

\[
\min f(x) \\
0 \leq x_i, \ i = 1, \ldots, 10
\]
Why learn more about floating-point operations III

- After the problem is solved, want to know how many are zeros?
- Should you use

  ```
  for (i=0; i < 10; i++)
      if (x[i] == 0) count++ ;
  ```
- People said: don’t do floating-point comparisons

  ```
  epsilon = 1.0e-12 ;
  for (i=0; i < 10; i++)
      if (x[i] <= epsilon) count++ ;
  ```
Why learn more about floating-point operations IV

How do you choose ϵ?

Is this true?
Floating-point Formats I

- We know float (single): 4 bytes, double: 8 bytes
 Why?

- A floating-point system
 base β, precision p, significand (mantissa) $d.d\ldots d$

- Example

 \[
 0.1 = 1.00 \times 10^{-1} \quad (\beta = 10, p = 3) \\
 \approx 1.1001 \times 2^{-4} \quad (\beta = 2, p = 5)
 \]

 exponent: -1 and -4

- Largest exponent e_{max}, smallest e_{min}
Floating-point Formats II

- β^p possible significands, $e_{\text{max}} - e_{\text{min}} + 1$ possible exponents

\[\lceil \log_2(e_{\text{max}} - e_{\text{min}} + 1) \rceil + \lceil \log_2(\beta^p) \rceil + 1 \]

bits for storing a number

1 bit for \pm

- But the practical setting is more complicated
- See the discussion of IEEE standard later
- Normalized: 1.00×10^{-1} (yes), 0.01×10^1 (no)
- Now most used normalized representation
but an issue is we cannot represent zero

- A natural way for 0: $1.0 \times \beta^{e_{\text{min}}-1}$
 - This preserves the ordering
- Will use $p = 3, \beta = 10$ for most later explanation
When $\beta = 10$, $p = 3$, 3.14159 represented as 3.14×10^0

\Rightarrow error $= 0.00159 = 0.159 \times 10^{-2}$, i.e. 0.159 units in the last place

10^{-2}: unit of the last place

ulps: unit in the last place

relative error $0.00159/3.14159 \approx 0.0005$

For a number $d.d \ldots d \times \beta^e$, the largest error is

$$0.0\ldots0\underbrace{\beta'}_{p-1} \times \beta^e, \beta' = \beta/2$$
Relative Errors and Ulps II

- Error = $\frac{\beta}{2} \times \beta^{-p} \times \beta^e$

 $1 \times \beta^e \leq \text{original value} < \beta \times \beta^e$

 relative error between

 $\frac{\beta}{2} \times \beta^{-p} \times \beta^e$ and $\frac{\beta}{2} \times \beta^{-p} \times \beta^e$

 so

 relative error $\leq \frac{\beta}{2} \beta^{-p}$

 \[(1) \]

- $\frac{\beta}{2} \beta^{-p} = \beta^{-p+1}/2$ is called machine epsilon
Relative Errors and Ulps III

That is, the bound in (1)

- When a number is rounded to the closest, relative error bounded by ϵ
$p = 3, \beta = 10$

Example: $x = 12.35 \Rightarrow \tilde{x} = 1.24 \times 10^1$

error = 0.05 = 0.005 $\times 10^1$

ulps = 0.01 $\times 10^1$, $\epsilon = \frac{1}{2}10^{-2} = 0.005$

error 0.5 ulps

relative error 0.05/12.35 $\approx 0.004 = 0.8\epsilon$

$8x = 98.8, 8\tilde{x} = 9.92 \times 10^1$

error = 4.0 ulps

relative error $= 0.4/98.8 = 0.8\epsilon$.

ulps and ϵ may be used interchangeably