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Floating-point operations |

@ The science of floating-point arithmetics
o |EEE standard
@ Reference
What every computer scientist should know about

floating-point arithmetic, ACM computing survey,
1991
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Why learn more about floating-point
operations |

Example:
@ A one-variable problem

min f(x)

X

x>0

@ In your program, should you set an upper bound of
x?

@ x in your program may be wrongly increased to oo
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@ What is the largest representable number in the
computer?

@ Is there anything called infinity?
Example:
@ A ten-variable problem

min f(x)
0<x,i=1,...,10
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Why learn more about floating-point
operations |l

@ After the problem is solved, want to know how
many are zeros?

@ Should you use
for (i=0; i < 10; i++)
if (x[i] == 0) count++ ;
@ People said: don’t do floating-point comparisons
epsilon = 1.0e-12 ;
for (i=0; i < 10; i++)
if (x[i] <= epsilon) count++ ;
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How do you choose €7

@ Is this true?
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@ We know float (single): 4 bytes, double: 8 bytes
Why?
@ A floating-point system
base /3, precision p, significand (mantissa) d.d...d
e Example

01 = 1.00x10* (B=10,p=3)
~ 11001 x2* (B=2,p=5)

exponent: —1 and —4

@ Largest exponent en., smallest enin
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@ (3P possible significands, emnax — €min + 1 possible
exponents

[logy(€emax — €min + 1)] + [logy(87)] + 1

bits for storing a number
1 bit for +
@ But the practical setting is more complicated
See the discussion of IEEE standard later
e Normalized: 1.00 x 107! (yes), 0.01 x 10! (no)
@ Now most used normalized representation
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but an issue is we cannot represent zero
e A natural way for 0: 1.0 x [Fénin~1
This preserves the ordering
@ Will use p = 3,3 = 10 for most later explanation
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Relative Errors and Ulps |

@ When § =10, p = 3, 3.14159 represented as
3.14 x 10°

= error = 0.00159 = 0.159 x 1072, i.e. 0.159 units
in the last place

1072: unit of the last place
@ ulps: unit in the last place
e relative error 0.00159/3.14159 ~ 0.0005
@ For a number d.d...d x 3¢, the largest error is

o.o...105’ x B¢, 3 = B/2
T
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@ Error = g X 7P x B¢
1 x 8¢ < original value < g x 5°

relative error between

gxﬁfpxﬁe gxﬁfpxﬁe
and
Be 5e+1
SO
relative error < gﬂp (1)

o 2P = pB7P*1/2 s called machine epsilon
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That is, the bound in (1)

@ When a number is rounded to the closest, relative
error bounded by ¢
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ulps and € |

e p=3,4=10
@ Example: x =12.35 = &% = 1.24 x 10!
error = 0.05 = 0.005 x 10!
e ulps = 0.01 x 10}, e = 21072 = 0.005
@ error 0.5 ulps
relative error 0.05/12.35 ~ 0.004 = 0.8¢
@ 8x = 98.8,8% = 9.92 x 10!
error = 4.0 ulps
relative error = 0.4/98.8 = 0.8e.
@ ulps and € may be used interchangeably
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