Memory Management I

 Approach 3: block algorithms (nb = 256) for j=1:nb:n for k=1:nb:nfor jj=j:j+nb-1for kk=k:k+nb-1c(:,jj) = a(:,kk)*b(kk,jj)+c(:,jj);end end end end

Memory Management II

In MATLAB, 1:256:1025 means 1, 257, 513, 769

Note that we calculate

$$\begin{bmatrix} A_{11} & \cdots & A_{14} \\ & \vdots & \\ A_{41} & \cdots & A_{44} \end{bmatrix} \begin{bmatrix} B_{11} & \cdots & B_{14} \\ & \vdots & \\ B_{41} & \cdots & B_{44} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} + \cdots + A_{14}B_{41} & \cdots \\ & \vdots & & \ddots \end{bmatrix}$$

Memory Management III

• Each block: 256 × 256

$$C_{11} = A_{11}B_{11} + \cdots + A_{14}B_{41}$$
 $C_{21} = A_{21}B_{11} + \cdots + A_{24}B_{41}$
 $C_{31} = A_{31}B_{11} + \cdots + A_{34}B_{41}$
 $C_{41} = A_{41}B_{11} + \cdots + A_{44}B_{41}$

• For each (j, k), $B_{k,j}$ is used to add $A_{:,k}B_{k,j}$ to $C_{:,j}$

Memory Management IV

• Example: when j = 1, k = 1

$$C_{11} \leftarrow C_{11} + A_{11}B_{11}$$

 \vdots
 $C_{41} \leftarrow C_{41} + A_{41}B_{11}$

- Use Approach 2 for $A_{:,1}B_{11}$
- $A_{:,1}$: 256 columns, $1024 \times 256/65536 = 4$ pages. $A_{:,1}, \ldots, A_{:,4}$: $4 \times 4 = 16$ page faults in calculating $C_{:,1}$
- For A: 16×4 page faults
- B: 16 page faults, C: 16 page faults

LAPACK I

- BLAS defines only operations such as matrix-matrix products. How about operations like LU factorization for solving linear systems?
- LAPACK Linear Algebra PACKage, based on BLAS
- Routines for solving
 Systems of linear equations
 Least-squares solutions of linear systems of equations
 Eigenvalue problems, and

LAPACK II

- Singular value problems.
- Subroutines in LAPACK classified as three levels:
- driver routines: each solves a complete problem, for example solving a system of linear equations
- computational routines: each performs a distinct computational task, for example an LU factorization
- auxiliary routines: subtasks of block algorithms, commonly required low-level computations, a few extensions to the BLAS
- LAPACK provides both single and double versions

LAPACK III

- Naming: All driver and computational routines have names of the form XYY777
- X: data type, S: single, D: double, C: complex, Z: double complex
- YY, indicate the type of matrix, for example

LAPACK IV

Band matrix: a band of nonzeros along diagonals

ZZZ indicates the computation performed. For example,

LAPACK V

SV simple driver of solving general
linear systems

TRF factorize

TRS use the factorization to solve Ax = b
by forward or backward substitution

CON estimate the reciprocal of the
condition number

SGESV: simple driver for single general linear systems
 SGBSV: simple driver for single general band linear systems

LAPACK VI

 Now optimized BLAS and LAPACK available on nearly all platforms
 For example, Intel MKL (Math Kernel Library)

Block Algorithms in LAPACK I

- From LAPACK manual Third edition; Table 3.7
 http://www.netlib.org/lapack/lug
- LU factorization DGETRF: $O(n^3)$
- Speed in megaflops (10⁶ floating point operations per second)

Block Algorithms in LAPACK II

	No. of	Block	n	
	CPUs	size	100	1000
Dec Alpha Miata	1	28	172	370
Compaq AlphaServer DS-20	1	28	353	440
IBM Power 3	1	32	278	551
IBM PowerPC	1	52	77	148
Intel Pentium II	1	40	132	250
Intel Pentium III	1	40	143	297
SGI Origin 2000	1	64	228	452
SGI Origin 2000	4	64	190	699
Sun Ultra 2	1	64	121	240
Sun Enterprise 450	1	64	163	334
		< □ > < □ > ·	(≥) (≥	

Block Algorithms in LAPACK III

- 100 to 1000: number of operations 1000 times
- Block algorithms are not very effective for small-sized problems
- Clock speed of Intel Pentium III: 550 MHz
- Thus by block algorithms good performance can be achieved

ATLAS: Automatically Tuned Linear Algebra Software I

- Web page: http://math-atlas.sourceforge.net/
- Programs specially compiled for your architecture
 That is, things related to your CPU, size of cache,
 RAM, etc. are considered