
Optimized BLAS: an Example by Using
Block Algorithms I

Let’s test the matrix multiplication

A C program:

#define n 3000

double a[n][n], b[n][n], c[n][n];

int main()

{

int i, j, k;

for (i=0;i<n;i++)

Chih-Jen Lin (National Taiwan Univ.) 1 / 19



Optimized BLAS: an Example by Using
Block Algorithms II

for (j=0;j<n;j++) {

a[i][j]=1; b[i][j]=1;

}

for (i=0;i<n;i++)

for (j=0;j<n;j++) {

c[i][j]=0;

for (k=0;k<n;k++)

c[i][j] += a[i][k]*b[k][j];

}

Chih-Jen Lin (National Taiwan Univ.) 2 / 19



Optimized BLAS: an Example by Using
Block Algorithms III

}

Results:

cjlin@linux1:~$ gcc -O3 mat.c; time ./a.out

real 1m24.909s

user 1m24.534s

sys 0m0.193s

We do the same task on Matlab

To remove the effect of multi-threading, use

matlab -singleCompThread

Chih-Jen Lin (National Taiwan Univ.) 3 / 19



Optimized BLAS: an Example by Using
Block Algorithms IV

Results:

cjlin@linux1:~$ matlab -singleCompThread

>> n = 3000;

>> A = randn(n,n); B = randn(n,n);

>> tic; C = A*B; toc

Elapsed time is 1.708523 seconds.

An issue about timing is elapsed time versus CPU
time

Chih-Jen Lin (National Taiwan Univ.) 4 / 19



Optimized BLAS: an Example by Using
Block Algorithms V

>> A = randn(n,n); B = randn(n,n);

>> t = cputime; C = A*B; t = cputime -t

t =

1.3000

They are similar if no other jobs are running on this
machine.

Results of using multi-threading (the default of
MATLAB)

Chih-Jen Lin (National Taiwan Univ.) 5 / 19



Optimized BLAS: an Example by Using
Block Algorithms VI

cjlin@linux1:~$ matlab

>> n = 3000;

>> A = randn(n,n); B = randn(n,n);

>> tic; C = A*B; toc

Elapsed time is 0.426942 seconds.

>> A = randn(n,n); B = randn(n,n);

>> t = cputime; C = A*B; t = cputime -t

t =

Chih-Jen Lin (National Taiwan Univ.) 6 / 19



Optimized BLAS: an Example by Using
Block Algorithms VII

5.1200

We see that under the same setting of using a single
thread, Matlab is much faster than a code written
by ourselves.

Why ?

Optimized BLAS: an implementation that takes the
advantage of memory hierarchies

Data locality is exploited

Use the highest level of memory as possible

Chih-Jen Lin (National Taiwan Univ.) 7 / 19



Optimized BLAS: an Example by Using
Block Algorithms VIII

Block algorithms: a way to transfer sub-matrices
between different levels of storage

They localize operations to achieve good
performance

Chih-Jen Lin (National Taiwan Univ.) 8 / 19



Memory Hierarchy I

CPU

↓
Registers

↓
Cache

↓
Main Memory

↓
Secondary storage (Disk)

Chih-Jen Lin (National Taiwan Univ.) 9 / 19



↑: increasing in speed

↓: increasing in capacity

Chih-Jen Lin (National Taiwan Univ.) 10 / 19



Memory Management I

Our examples are based on the paper (McKellar and
Coffman, 1969) and some existing teaching
materials

We assume that the computer has only two layers of
memory

main memory
secondary memory

Page fault: an operand is not available in main
memory and must be transported from secondary
memory

Chih-Jen Lin (National Taiwan Univ.) 11 / 19



Memory Management II

When moving things between layers, due to
initialization cost, we move a continuous segment of
data (called a page) instead of a single value

Usually if a page is moved to the main memory, it
overwrites page least recently used

An example: C = AB + C , n = 1, 024

Assumption: a page 65,536 doubles = 64 columns

16 pages for each matrix

48 pages for three matrices

Chih-Jen Lin (National Taiwan Univ.) 12 / 19



Memory Management III

Assumption: available memory 16 pages, matrices
access: column oriented

A =

[
1 2
3 4

]
column oriented: 1 3 2 4

row oriented: 1 2 3 4

access each row of A: 16 page faults, 1024/64 = 16

Approach 1:

Chih-Jen Lin (National Taiwan Univ.) 13 / 19



Memory Management IV

for i =1:n

for j=1:n

for k=1:n

c(i,j) = a(i,k)*b(k,j)+c(i,j);

end

end

end

We use a matlab-like syntax here

At each (i,j): each row a(i, 1:n) causes 16 page
faults

Chih-Jen Lin (National Taiwan Univ.) 14 / 19



Memory Management V

Total: 10242 × 16 page faults

at least 16 million page faults

Approach 2:

for j=1:n

for k=1:n

for i=1:n

c(i,j) = a(i,k)*b(k,j)+c(i,j);

end

end

end

Chih-Jen Lin (National Taiwan Univ.) 15 / 19



Memory Management VI

For each j , access all columns of A

A needs 16 pages, but B and C take spaces as well

So A must be read for every j

For each j , 16 page faults for A

1024× 16 page faults

C ,B : 16 page faults

What if we implement this approach in C?

Code:

Chih-Jen Lin (National Taiwan Univ.) 16 / 19



Memory Management VII

#define n 3000

double a[n][n], b[n][n], c[n][n];

int main()

{

int i, j, k;

for (i=0;i<n;i++)

for (j=0;j<n;j++) {

a[i][j]=1; b[i][j]=1;

c[i][j]=0;

}

Chih-Jen Lin (National Taiwan Univ.) 17 / 19



Memory Management VIII

for (j=0;j<n;j++) {

for (k=0;k<n;k++)

for (i=0;i<n;i++)

c[i][j] += a[i][k]*b[k][j];

}

}

Results:

Chih-Jen Lin (National Taiwan Univ.) 18 / 19



Memory Management IX

cjlin@linux1:~$ gcc -O3 mat1.c; time ./a.out

real 4m20.247s

user 4m19.761s

sys 0m0.154s

Why is it even slower?

C is row-oriented instead of column-oriented

Thus we had implemented Approach 2 first and
then Approach 1

Chih-Jen Lin (National Taiwan Univ.) 19 / 19


