
Homework 3-1 (50 pts)

1 Floating-point Exception Handling Practice

In homework 3-1, you are required to write a C program to generate the same result as the “An Example in
Handlers I” by using the GNU C Library [1]. To be specific, when we discuss trap handlers in the course, the
slide provided a Sun’s example in “An Example in Handlers I”.

Here is a summary of how the code is organized:

� The code enables the trap of the “common” floating-point exception cases, i.e. invalid, division by zero,
and overflow.

� After that, the program run underflow and overflow floating-point operation in sequence.

Because the code only enables traps and handles the common case, only the overflow floating-point operation
will trigger the trap and activate the handler.

1.1 Details of the Program Requirement

We will compile and run your code in the CSIE workstation. Please make sure your program
can be compiled and run on the CSIE workstation. If you don’t have an account please go to CSIE 217
room to apply for one.

� Your program should be organized in the following way:

STUDENT ID/hw3=1. c
STUDENT ID/ make f i l e

The executable title should be called hw3-1. Then zip your STUDENT ID folder to

STUDENT ID. z ip

� We will run your program with the following command:

unzip STUDNET ID. z ip
cd STUDNET ID
make
. / hw3=1 > out

Please make sure that submitted file can be tested on CSIE workstation by using above
commands!

� In your program, you should output to stdout. In your code please exactly use the following output
formats:

p r i n t f (” min normal = %g\n” , x ) ;
p r i n t f (” min normal / 13 .0 = %g\n” , x ) ;
p r i n t f (” max normal = %g\n” , x ) ;
p r i n t f (” max normal * max normal = %g\n” , x ) ;

where x is a double type. Each output is respectively for min normal, underflow value, max normal and
overflow value. Your output order should be like

min normal = ***

min normal / 13 .0 = ***

max normal = ***

max normal * max normal = ***

1



where *** is the value of x.

� Additionally, when your program trap the overflow operation, program should output an error message
to stderr in the following format.

f p r i n t f ( s tde r r , ”SIGFP i s catched !\n ” ) ;

� Please follow the exact output format or your credit will be affected. That is, your code should go on
after the handling.

1.2 Useful Resources

� Floating-point Exception Handling: https://gcc.gnu.org/onlinedocs/gcc-3.3.6/g77/Floating_002dpoint-Exception-Handling.
html

� FP Exceptions: https://www.gnu.org/software/libc/manual/html_node/FP-Exceptions.html

� Signal Handling: https://www.gnu.org/software/libc/manual/html_node/Signal-Handling.html

� Non-Local Exits: https://www.gnu.org/software/libc/manual/html_node/Non_002dLocal-Details.
html

� Here is a simple example for makefile:

a l l : hw3=1. c
gcc =o hw3=1 hw3=1. c =lm

References

[1] “The gnu c libaray.” [Online]. Available: https://www.gnu.org/software/libc/manual/

2

https://gcc.gnu.org/onlinedocs/gcc-3.3.6/g77/Floating_002dpoint-Exception-Handling.html
https://gcc.gnu.org/onlinedocs/gcc-3.3.6/g77/Floating_002dpoint-Exception-Handling.html
https://www.gnu.org/software/libc/manual/html_node/FP-Exceptions.html
https://www.gnu.org/software/libc/manual/html_node/Signal-Handling.html
https://www.gnu.org/software/libc/manual/html_node/Non_002dLocal-Details.html
https://www.gnu.org/software/libc/manual/html_node/Non_002dLocal-Details.html
https://www.gnu.org/software/libc/manual/

	Floating-point Exception Handling Practice
	Details of the Program Requirement
	Useful Resources


