
Numerical Methods 2022 — Final Exam

Solutions

Problem 1 (40 pts). Consider a linear system Ax = b:1 0 0
0 2 1
0 1 1

x =

11
1


(a) (5 pts) Is the matrix A symmetric positive definite? If so, please prove it. Otherwise, give a counter

example x.

(b) (5 pts) Take x0 =
[
0 0 0

]T
. Do two CG iterations and show what x1 and x2 are. Is x2 a solution

or not? You must show the details such as α, β, ρ, etc. in the middle of the procedure.

(c) (10 pts) Let r1 and p1 be the vectors calculated in (b). Solve the following optimization problem
of the variable p directly (By plugging the constraint into the objective, you get a unconstrained
problem which can be solved easily.):

min
p

∥p− r1∥22

s.t. p ∈ span{Ap1}⊥
(1)

How does the solution of this problem connect to the p2 obtained in the CG procedure?

(d) (5 pts) In slides “sparse CG4.pdf”, we have a theorem saying that if

A = I +B

for some matrix B, then there is an upperbound on the number of CG steps in terms of rank(B).
From what you have observed in (a)-(c), what is the lower bound of rank(B)? Check B to confirm
the result.

(e) (5 pts) In our slides “sparse CG3.pdf”, we have a theorem in page 1, which said that

span
{
p1, . . . ,pj

}
=span {r0, . . . , rj−1}
=span

{
b, Ab, . . . , Aj−1b

} (2)

after jth iteration of CG. Please check whether (2) holds for j = 2 in this case. Hint: You may
consider some results in the process of doing sub-problem (b).
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(f) (5 pts) Now consider

A =

1 0 0
0 1 1
0 1 1

 and b =

 1
−1
1


Prove that A is only positive semi-definite but not positive definite.

(g) (5 pts) Following (f), run CG on the new problem and see if it fails at some time points. See if
this corresponds to our explanation in the end of “sparse CG4.pdf” about why CG requires A to
be positive definite.

Solution.

(a) For any vector x = (x1, x2, x3), we have

xTAx = xT

 x1

2x2 + x3

x2 + x3


= x2

1 + x2(2x2 + x3) + x3(x2 + x3)

= x2
1 + 2x2

2 + 2x2x3 + x2
3

= x2
1 + x2

2 + (x2 + x3)
2

≥ 0

If xTAx = 0, then x1 = x2 = (x2 + x3) = 0. Therefore, xTAx = 0 only when x = 0. Therefore, A
is positive definite.

(b) In the beginning, we have

x0 = 0, r0 = b, ρ0 = 3. (3)

In the first iteration, we have

p1 = b, w1 = Ap1 =

13
2

 , α1 =
3

pT
1w1

=
1

2
, (4)

x1 = x0 +
1

2

11
1

 =

1/21/2
1/2

 , r1 =

11
1

− α1w1 =

 1/2
−1/2
0

 , ρ1 =
1

2
. (5)

In the second iteration, we have

β2 =
1/2

3
=

1

6
, p2 =

 1/2
−1/2
0

+
1

6

11
1

 =

 2/3
−1/3
1/6

 , (6)

w2 = Ap2 =

 2/3
−1/2
−1/6

 , α2 =
1/2

pT
2w2

=
6

7
,
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x2 =

1/21/2
1/2

+
6

7

 2/3
−1/2
1/6

 =
1

14

153
9

 .

We can know that x2 is not the solution since Ax2 =
1
14

1515
12

 ̸= b.

(c) The vector p = (p1, p2, p3) has to satisfy the condition

p ∈ span{Ap1}⊥ ⇐⇒ pTAp1 = 0 ⇐⇒ p1 + 3p2 + 2p3 = 0. (7)

Therefore, the equivalent optimization problem is

min
p

F (p) =

∥∥∥∥∥∥p−

 1/2
−1/2
0

∥∥∥∥∥∥
2

2

s.t. p1 + 3p2 + 2p3 = 0

Plugging the constraint p1 = −3p2 − 2p3 into F (p), we get a new equivalent problem:

min
p2,p3

f(p2, p3) = (−3p2 − 2p3 −
1

2
)2 + (p2 +

1

2
)2 + p23

The is an unconstrained problem which can be solved by setting the derivative as zero:

∂f

∂p2
= 0 =⇒ −6(−3p2 − 2p3 −

1

2
) + 2(p2 +

1

2
) = 0

∂f

∂p3
= 0 =⇒ −4(−3p2 − 2p3 −

1

2
) + 2p3 = 0

(8)

By solving (8) and then using (7), we get the solution

p =
1

7

 4
−2
1

 =
6

7
p2.

We can see that the solution p is parallel to the p2 obtained in (b).

(d) In (b), we already know that the algorithm have not converged after 2 iterations. Then, from the
theorem in the slide we know that rank(B) + 1 > 2 and so rank(B) ≥ 2. To confirm this, we can
calculate that

B = A− I =

0 0 0
0 1 1
0 1 0

 =⇒ rank(B) = 2.

(e) First, we show that span{p1,p2} = span{r0, r1}. We know that

r0 = b = p1 =

11
1

 .
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Also, from (6) we know that

r1 =

 1/2
−1/2
0

 = p2 −
1

6
p1,

so span{r0, r1} ⊆ span{p1,p2}. By rearranging the terms, we then have

p1 = r0

p2 = r1 +
1

6
r0,

so span{r0, r1} = span{p1,p2}.
Next, we show that span{r0, r1} = span{b, Ab}. From (4), we know that

Ab = w1 =

13
2

 .

Also, from (3) and (5) we respectively have

r0 = b

r1 =

 1/2
−1/2
0

 = b− 1

2
Ab,

which then implies that

b = r0 and Ab = −2r1 + 2r0.

Therefore, span{r0, r1} = span{b, Ab}.

(f) For any vector x = (x1, x2, x3), we have

xTAx = xT

 x1

x2 + x3

x2 + x3


= x2

1 + x2(x2 + x3) + x3(x2 + x3)

= x2
1 + x2

2 + 2x2x3 + x2
3

= x2
1 + (x2 + x3)

2

≥ 0

Since xTAx = 0 when x1 = 0, x2 = 1 and x3 = −1, A is positive semi-definite but not positive-
definite.

(g) In the beginning, we have

x0 = 0, r0 = b, ρ0 = 3.
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In the first iteration, we have

p1 = b, w1 = Ap1 =

10
0

 , α1 =
3

pT
1w1

= 3,

x1 = x0 + 3

 1
−1
1

 =

 3
−3
3

 , r1 =

 1
−1
1

− α1w1 =

−2
−1
1

 , ρ1 = 6.

In the second iteration, we have

β2 =
6

3
=

1

6
, p2 =

−2
−1
1

+ 2

 1
−1
1

 =

 0
−3
3

 , w2 = Ap2 =

00
0

 , α2 =
6

pT
2w2

=
6

0
,

so the CG procedure failed because of division by zero.

From the slides, we need pT
2Ap2 > 0 to obtain α. However, we now have pT

2Ap2 = 0 since A is only
semi-definite, so CG fails.

Problem 2 (15 pts). On page 8 of “sparse CG3.pdf”, we wish to minimize

min
w,µ

∥(1 + µ

αk−1

)rk−1∥2 + ∥ − µ

αk−1

rk−2 − APk−2w∥2.

We claimed that if the optimal solution is (w∗, µ∗), then

− w∗

µ∗/αk−1

must be the solution to min
z

∥rk−2 − APk−2z∥. (9)

In this problem, we are going to verify this relation through direct calculation.

(a) (10 pts) Minimizing the function
min
z

∥rk−2 − APk−2z∥

is equivalent to minimizing
min
z

∥rk−2 − APk−2z∥2,

which is a quadratic function of z. Solve this optimization problem by setting the gradient with
respect to z as zero. The solution z∗ should be expressed in terms of A,Pk−2 and rk−2.

(b) (5 pts) Similar to (a), by defining

F (w, µ) = ∥(1 + µ

αk−1

)rk−1∥2 + ∥ − µ

αk−1

rk−2 − APk−2w∥2,

we have a quadratic function of (w, µ). By solving ∇wF (w∗, µ∗) = 0, show that (9) is correct.

Solution.
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(a) The function we are minimizing is

F (z) = ∥rk−2 − APk−2z∥2

= (rk−2 − APk−2z)
T (rk−2 − APk−2z)

= rT
k−2rk−2 − 2rT

k−2APk−2z + zTP T
k−2A

TAPk−2z.

The minimizer must satisfy

∇zF (z∗) = −2P T
k−2A

Trk−2 + 2P T
k−2A

TAPk−2z
∗ = 0.

Therefore, the solution is

z∗ = (P T
k−2A

TAPk−2)
−1P T

k−2A
Trk−2.

(b) By re-writing the norm as matrix products, the obtain the new objective we want to minimize:

F (w, µ) = (1 +
µ

αk−1

)2rT
k−1rk−1 + (

µ

αk−1

)2rT
k−2rk−2 +wTP T

k−2A
TAPk−2w +

2µ

αk−1

rT
k−2APk−2w

The minimum (w∗, µ∗) must satisfy

∇wF (w∗, µ∗) = 2P T
k−2A

TAPk−2w
∗ +

2µ∗

αk−1

P T
k−2A

Trk−2 = 0

=⇒ w∗ = − µ∗

αk−1

(P T
k−2A

TAPk−2)
−1P T

k−2A
Trk−2 (10)

Indeed, we see that

− w∗

µ∗/αk−1

= (P T
k−2A

TAPk−2)
−1P T

k−2A
Trk−2 = z∗.

Problem 3 (15 pts). Let the function f be

f(x) = 4
(x
π

)2

.

We wish to approximate f(x) using a Fourier series with n term

Sn(x) =
a0 + an cosnx

2
+

n−1∑
k=1

(
ak cos kx+ bk sin kx

)
(11)

and 2m points
(x0, f(x0)), · · · , (x2m−1, f(x2m−1)),

where

xk = −π +
k

m
π, k = 0, . . . , 2m− 1.

In the following subproblems, we consider the case where m = n = 2.

(a) (5 pts) Please give the matrix A2, A1 and P so that the Fourier Transform matrix F can be decom-
posed into

F = A2A1P.
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(b) (5 pts) Following (a), calculate the coefficient vector c given by

c = A2A1Py (12)

where yk = f(xk).

(c) (5 pts) Following (b), calculate
a0, a1, a2

and
b1

from c. Then, write down the transformed series in the form of (11).

Solution.

(a) The δ we will be using is
e−iπ/m = −i.

To calculate A2, we have

L = 22 = 4, r =
2m

L
=

4

4
= 1,

and so

A2 = Ir ⊗BL

= I1 ⊗B4

=
[
1
]
⊗
[
I2 Ω2

I2 −Ω2

]
, whereΩ2 =

[
1 0
0 δ

]

=


1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i

 (13)

To get A1, we have

L = 21 = 2, r =
2m

L
= 2.

and

A1 = Ir ⊗BL

= I2 ⊗B2

=

[
1 0
0 1

]
⊗

[
I1 Ω1

I1 −Ω1

]
, whereΩ1 =

[
1
]

=


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (14)
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The permutation is calculated by reversing the binary representation.

00 → 00 column 0 swapped to column 0

01 → 10 column 1 swapped to column 2

10 → 01 column 2 swapped to column 1

11 → 11 column 3 swapped to column 3

Therefore, we have

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (15)

(b) First, the vector y is 
f(−π)
f(−π

2
)

f(0)
f(π

2
)

 =


4
1
0
1

 .

Therefore, by (15) we have

Py =


4
0
1
1

 .

Then by (14) and (13) we can then calculate

A1(Py) =


4
4
2
0



and c = A2(A1Py) =


6
4
2
4

 .

(c) From c we can then calculate

a0 =
Re(c0)(−1)0

2
= 3

a1 =
Re(c1)(−1)1

2
= −2

a2 =
Re(c2)(−1)2

2
= 1

b1 =
Im(c0)(−1)1

2
= 0

and so the transformed series is

Sm(x) =
3 + cos(2x)

2
− 2 cos(x).
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Problem 4 (30 pts). For least-square regression, we solve the following optimization problem

min
a,b

∑
i

(yi − (axi + b))2 ,

where x ∈ R. Now instead we consider∑
i

max (yi − (axi + b)− ε, 0)2 +
∑
i

max ((axi + b)− yi − ε, 0)2 .

In other words, originally we have
errori = |yi − (axi + b)|

but now

errori =

{
0 if ε ≤ yi − (axi + b) ≤ ε

|yi − (axi + b)| otherwise

(a) (5 pts) Prove that
max(c, 0)2

is a differentiable function on c.

(b) (5 pts) Use (a) and chain rule to calculate derivatives with respect to a and b. That is, with the
definitions

Gi = max (yi − (axi + b)− ε, 0)2

Hi = max ((axi + b)− yi − ε, 0)2

Fi = Gi +Hi,

please derive the formulation of

∂Gi

∂a
,
∂Gi

∂b
,
∂Hi

∂a
and

∂Hi

∂b
, ∀i.

at first, and then you can get the final results

∂Fi

∂a
and

∂Fi

∂b
, ∀i.

Hint: to simplify the representation, consider using

ti = yi − (axi + b).

Then you may need to separately consider situations such as

ti − ε > 0, ti − ε ≤ 0,

etc.

(c) (10 pts) Consider

(x1, y1) =(0, 0)

(x2, y2) =(1, 2)

(x3, y3) =(2, 1)
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and

ε =
1

2
.

In this and the next sub-problem, we aim to solve equations derived in (b) to get a∗ and b∗. To
begin, consider the results

∂Fi

∂a
, ∀i

from (b). Please identify three possible situations of

∂F1

∂a
+

∂F2

∂a
+

∂F3

∂a
= 0

according to the sign of
∂Fi

∂a
, ∀i.

(d) (10 pts) Now move to check
∂Fi

∂b
, ∀i

and the condition
∂F1

∂b
+

∂F2

∂b
+

∂F3

∂b
= 0.

See if for i = 2, 3, you can identify the relationship between

∂Fi

∂a
and

∂Fi

∂b
. (16)

From (16) and the result of (c), you can then separately discuss three situations for finding the
optimal solution a∗ and b∗. Hint: One of the situation involves in analyzing inequalities. Specifically,
you have three types of inequalities of a and b. You can draw a figure to see if there are points
satisfying all inequalities. For the other two cases, you must solve two-variable linear systems.

Solution.

(a) Let

F (c) = max(c, 0)2 =

{
c2 c > 0
0 c ≤ 0

.

If c ̸= 0, F (c) is a polynomial function. Thus, we have

F ′(c) =

{
2c c > 0
0 c < 0

.

For the derivative of F (0), we use the derivative’s definition on two sides. The right side is

lim
t→0+

F (0 + t)− F (0)

t
= lim

t→0+

t2

t
= lim

t→0+
t = 0,

and the left is

lim
t→0−

F (0 + t)− F (0)

t
= lim

t→0−

0

t
= 0.

Therefore, we can conclude that

F ′(c) =

{
2c , c > 0
0 , c ≤ 0

,

which means F is differential function on c.
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(b) Let us take
Gi = max (ti − ε, 0)2

and
Hi = max (−ti − ε, 0)2 .

The derivatives of Gi on a and b are

∂Gi

∂a
=

{
∂Gi

∂(ti−ε)
∂(ti−ε)

∂a

0
=

{
2 (ti − ε) · (−xi) , ti − ε > 0

0 , ti − ε ≤ 0

and
∂Gi

∂b
=

{
∂Gi

∂(ti−ε)
∂(ti−ε)

∂b

0
=

{
2 (ti − ε) · (−1) , ti − ε > 0

0 , ti − ε ≤ 0

Similarly, the derivatives of Hi on a and b are

∂Hi

∂a
=

{
2 (−ti − ε) · xi , −ti − ε > 0

0 , −ti − ε ≤ 0

and
∂Hi

∂b
=

{
2 (−ti − ε) · 1 , −ti − ε > 0

0 , −ti − ε ≤ 0

Moreover, the derivatives of Gi +Hi can be derived as

∂(Gi +Hi)

∂a
=


−2 (ti − ε) · xi , ti > ε
−2 (ti + ε) · xi , ti < −ε

0 , −ε ≤ ti ≤ ε

and

∂(Gi +Hi)

∂b
=


−2 (ti − ε) , ti > ε
−2 (ti + ε) , ti < −ε

0 , −ε ≤ ti ≤ ε

(c) Let us define
Fi = Gi +Hi,

and we have

t1 =0− b

t2 =2− a− b

t3 =1− 2a− b

.

Then, we firstly derive

∂F1

∂a
=


−2

(
t1 − 1

2

)
· 0

−2
(
t1 +

1
2

)
· 0

0
=


0 , t1 >

1
2

0 , t1 < −1
2

0 , −1
2
≤ t1 ≤ 1

2

∂F2

∂a
=


−2

(
t2 − 1

2

)
· 1

−2
(
t2 +

1
2

)
· 1

0
=


−2t2 + 1 < 0 , t2 >

1
2

−2t2 − 1 > 0 , t2 < −1
2

0 , −1
2
≤ t2 ≤ 1

2

∂F3

∂a
=


−2

(
t3 − 1

2

)
· 2

−2
(
t3 +

1
2

)
· 2

0
=


−4t3 + 2 < 0 , t3 >

1
2

−4t3 − 2 > 0 , t3 < −1
2

0 , −1
2
≤ t3 ≤ 1

2

11



and focus on the equation
∂F1

∂a
+

∂F2

∂a
+

∂F3

∂a
= 0. (17)

Because
∂F1

∂a
= 0, ∀t1,

to satisfy (17), we can only have the following cases:

∂F2

∂a
∂F3

∂a
∂F1

∂a
+ ∂F2

∂a
+ ∂F3

∂a

0 0 0
+ - −2t2 − 1− 4t3 + 2
- + −2t2 + 1− 4t3 − 2

(i) In this situation

−1

2
≤ t2 ≤

1

2
and − 1

2
≤ t3 ≤

1

2
.

(ii) In this situation

t2 < −1

2
, t3 >

1

2
and − 2t2 − 4t3 + 1 = 0.

(iii) In this situation

t2 >
1

2
, t3 < −1

2
and − 2t2 − 4t3 − 1 = 0.

Next, we move on to the equation

∂F1

∂b
+

∂F2

∂b
+

∂F3

∂b
= 0 (18)

with

∂Fi

∂b
=


−2

(
ti − 1

2

)
−2

(
ti +

1
2

)
0

=


−2ti + 1 < 0 , ti >

1
2

−2ti − 1 > 0 , ti < −1
2

0 , −1
2
≤ ti ≤ 1

2

, i = 1, . . . , 3.

Clearly,
∂F2

∂b
=

∂F2

∂a

and
∂F3

∂b
=

∂F3

∂a
· 1
2
.

Therefore, from (18) and the three cases to consider ∂Fi/∂a, we can have only the following situa-
tions.

∂F1

∂b
∂F2

∂b
∂F3

∂b
∂F1

∂b
+ ∂F2

∂b
+ ∂F3

∂b

0 0 0 0
- + - −2t1 + 1− 2t2 − 1− 2t3 + 1
+ - + −2t1 − 1− 2t2 + 1− 2t3 − 1
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Figure 1: Explanation for situation (i)

(i) In this situation, let us suppose that there exists (a, b) such that
−1

2
≤ t1 ≤ 1

2

−1
2
≤ t2 ≤ 1

2

−1
2
≤ t3 ≤ 1

2

=


−1

2
≤ −b ≤ 1

2

−1
2
≤ 2− a− b ≤ 1

2

−1
2
≤ 1− 2a− b ≤ 1

2

⇒


−1

2
≤ b ≤ 1

2

1 ≤ a ≤ 3
0 ≤ a ≤ 1

,

and it implies that a = 1. However, if we take a = 1,
−1

2
≤ −b ≤ 1

2

−1
2
≤ 2− a− b ≤ 1

2

−1
2
≤ 1− 2a− b ≤ 1

2

=


−1

2
≤ −b ≤ 1

2

−1
2
≤ 1− b ≤ 1

2

−1
2
≤ −1− b ≤ 1

2

,

which means there does not exist a b such that all of these conditions are satisfied. Hence, the
optimal solution (a∗, b∗) is not in this case.

Figure 1 shows that the intersection of these three conditions
−1

2
≤ −b ≤ 1

2

−1
2
≤ 2− a− b ≤ 1

2

−1
2
≤ 1− 2a− b ≤ 1

2

,

is empty, which may help you realize what happens in this situation.

(ii) In this situation, we solve the linear equation of (17) and (18){
−2t2 − 4t3 + 1 = 0
−2t1 − 2t2 − 2t3 + 1 = 0

=

{
10a+ 6b = 7
6a+ 6b = 5

⇒
{

a = 1
2

b = 1
3

,

but

t3 = 1− 2 · 1
2
− 1

3
= −1

3
<

1

2
.

Hence, there is no solution that satisfies the conditions.
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(iii) Similarly, we have the linear equation{
−2t2 − 4t3 − 1 = 0
−2t1 − 2t2 − 2t3 − 1 = 0

=

{
10a+ 6b = 9
6a+ 6b = 7

⇒
{

a = 1
2

b = 2
3

,

and then confirm the solution on the conditions
t1 = −2

3
< −1

2

t2 = 5
6
> 1

2

t3 = −2
3
< −1

2

Therefore, the optimal solution (a∗, b∗) can be (1/2, 2/3).

After the discussion, we have the only one optimal solution

(a∗, b∗) = (
1

2
,
2

3
).

The following figure shows the line of
y = ax+ b
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