IEEE standard: extended precision I

- It is a format that offers just a little extra precision and exponent
- Motivation for extended precision: some operations benefit from using more digits internally
- Example: some calculators display 10 digits but use 13 internally for calculation
- Example: binary-decimal conversion Think about writing/reading numbers to/from files When writing a binary number to a decimal number and read it back, can we get the same binary number?

IEEE standard: extended precision II

- Writing 9 digits is enough for short Though $10^8 > 2^{24}$, 8 digits are not enough (details not discussed)
- From Section 2.1.2 of Goldberg [1990], in reading the 9-digit number, if extended precision is available, an efficient algorithm can be done so that the original binary representation is recovered (details not shown)
- 17 digits for double precision (proof not provided). Example:

numbers in a data set from Matrix market:

IEEE standard: extended precision III

- > tail s1rmq4m1.dat
 - 8.2511736085618438E+01
 - -6.0042951255041466E+00
 - 1.0026197619563723E+01 -
 - -1.5108331040361231E+01
 - -1.1690286345961363E+03
 - 8.2511736074473220E+01

- 2.5134528659924950
- 8.6599442206615524
- -1.3136837661844502
 - 5.1423173996955084
 - 1.6250726655807816
 - 1.5108331040361227

A D F A B F A B F A B

• Matrix market:

http://math.nist.gov/MatrixMarket/

A collection of matrix data

IEEE standard: exactly rounded operations I

- Operations: IEEE standard requires results of addition, subtraction, multiplication and division exactly rounded.
- Exactly rounded: an array of words or floating-point numbers, expensive
- Goldberg [1990] showed using 2 guard digits and one sticky bit the result is the same as using exactly rounded operations
 - Only little more cost

(日)

IEEE standard: exactly rounded operations II

- Reasons to specify operations
 run on different machines ⇒ results the same
- IEEE: square root, remainder, conversion between integer and floating-point, internal formats and decimal are correctly rounded (i.e. exactly rounded operations)
- IEEE does not require transcendental functions to be exactly rounded
- Transcendental numbers:

< □ > < □ > < □ > < □ > < □ > < □ >

IEEE standard: exactly rounded operations III

 $e.g.,\;exp,log$

 Reason: cannot specify the precision because they are arbitrarily long

イロト 不得 トイヨト イヨト

Special quantities I

- On some computers (e.g., IBM 370) every bit pattern is a valid floating-point number
- For IBM 370, $\sqrt{-4} = 2$ and it prints an error message
- IEEE : NaN, not a number Thus not every bit pattern is a valid number
- Special value of IEEE:

 $+0,\,-0,$ denormalized numbers, $+\infty,\,-\infty,$ NaNs (more than one NaN)

• A summary

<ロト <問ト < 注ト < 注ト = 注

Special quantities II

Exponent	significand	represents
$e = e_{\min} - 1$	f = 0	+0, -0
$e=e_{\min}-1$	f eq 0	$0.f imes 2^{e_{\min}}$
$e_{\min} \leq e \leq e_{\max}$		$1.f imes 2^e$
$\mathit{e} = \mathit{e}_{max} + 1$	f = 0	$\pm\infty$
$\mathit{e} = \mathit{e}_{max} + 1$	f eq 0	NaN

• Why IEEE has NaN

Sometimes even $0/0\ \text{occurs},$ the program can continue

Example: find f(x) = 0, try different x's, even 0/0 happens, other values may be ok.

イロト 不得 トイヨト イヨト 二日

Special quantities III

• If
$$b^2 - 4ac < 0$$

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

returns NaN

-b+ NaN should be NaN In general when a NaN is in an operation, result is NaN

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Special quantities IV

イロト イヨト イヨト イヨト

Infinity I

- $\beta = 10, p = 3, e_{max} = 98, x = 3 \times 10^{70},$ x^2 overflow and replaced by 9.99×10^{98} ?? In IEEE, the result is ∞
- Note 0/0 = NaN, $1/0 = \infty$, $-1/0 = -\infty$ \Rightarrow nonzero divided by 0 is ∞ or $-\infty$ Similarly, $-10/0 = -\infty$, and $-10/-0 = +\infty$ (± 0 will be explained later)

•
$$3/\infty = 0, 4 - \infty = -\infty, \sqrt{\infty} = \infty$$

How to know the result?
 replace ∞ with x, let x → ∞

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Infinity II

Example:

$$\frac{3}{\infty}: \lim_{x \to \infty} 3/x = 0$$
If limit does not exist \Rightarrow NaN
• $x/(x^2 + 1)$ vs $1/(x + x^{-1})$
 $x/(x^2 + 1)$: if x is large, x^2 overflow, $x/\infty = 0$ but not $1/x$.
 $1/(x + x^{-1})$: x large, $1/x$ ok
 $1/(x + x^{-1})$ looks better but what about $x = 0$?
 $x = 0, 1/(0 + 0^{-1}) = 1/(0 + \infty) = 1/\infty = 0$

3

イロト イヨト イヨト イヨト

Infinity III

 If no infinity arithmetic, an extra instruction is needed to test if x = 0. This may interrupt the pipeline