An Example of Handlers I

- Let’s consider an example from SUN’s numerical computation guide
- In most systems there is a standard math library for functions like exp, pow, log, ...
- On SUN machines, there is an additional math library: libsunmath.a
 exp2, exp10, ..., ieee_flags, ieee_handler, ieee_retrospective
- A program:
#include <stdio.h>
#include <sys/ieeefp.h>
#include <sunmath.h>
#include <siginfo.h>
#include <ucontext.h>

void handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
 unsigned code, addr;
}
An Example of Handlers III

code = sip->si_code;
addr = (unsigned) sip->si_addr;
fprintf(stderr, "fp exception %x at
 address %x \n", code, addr);
}
int main()
{
 double x;

 /* trap on common floating point
 exceptions */
if (ieee_handler("set", "common", handler)
 != 0)
 printf("Did not set exception
 handler \n");

/* cause an underflow exception (not
 reported) */

x = min_normal();

printf("min_normal = %g \n", x);

x = x / 13.0;

printf("min_normal / 13.0 = %g \n", x);
An Example of Handlers V

/* cause an overflow exception (reported) */
x = max_normal();
printf("max_normal = %g \n", x);
x = x * x;
printf("max_normal * max_normal = %g \n", x);

ieee_retrospective(stderr);
return 0;
Result:

\[
\begin{align*}
\text{min_normal} & = 2.22507 \times 10^{-308} \\
\text{min_normal} / 13.0 & = 1.7116 \times 10^{-309} \\
\text{max_normal} & = 1.79769 \times 10^{308} \\
\text{fp exception 4 at address 10d0c} & \\
\text{max_normal} \times \text{max_normal} & = 1.79769 \times 10^{308}
\end{align*}
\]

Note: IEEE floating-point exception flags raised:

Inexact; Underflow;

IEEE floating-point exception traps enabled:
An Example of Handlers VII

overflow; division by zero; invalid operation.
See the Numerical Computation Guide, ieee_flags(3M), ieee_handler(3M)

- invalid, division, and overflow sometimes called common exceptions here
 ieee_handler("set", "common", handler) means handlers used for common exceptions
- min_normal / 13.0: using denormalized numbers
- handler: the subroutine to handle exceptions. Here we simply print something
The Use of Flags: An Example I

- Calculate x^n, n : integer

  ```c
  double pow(double x, int n)
  {
      double tmp = x, ret = 1.0;
      for(int t=n; t>0; t/=2)
      {
          if(t%2==1) ret*=tmp;
          tmp = tmp * tmp;
      }
      return ret;
  }
  ```
The Use of Flags: An Example II

\[
\begin{align*}
\text{x}^{16} &= (\text{x}^{2})^{8} = \ldots \\
\text{x}^{15} &= \text{x}(\text{x}^{2})^{7}, \text{ treat } \text{x}^{2} \text{ as the new } \text{x} \\
\text{x}^{15} &= \text{x}(\text{x}^{2})^{7} = \text{x}(\text{x}^{2})(\text{x}^{4})^{3} = \text{x}(\text{x}^{2})(\text{x}^{4})(\text{x}^{8})^{1} \\
\text{This subrouine handles the situation if } n \geq 0
\end{align*}
\]
If \(n < 0 \), we need to use

\[
x^n = (1/x)^{-n} = 1/(x^{-n})
\]

Example:

\[
2^{-5} = (1/2)^5 = 1/(2^5)
\]

- \(\text{pow}(1/x, -n) \) is less accurate; \(1/\text{pow}(x, -n) \) is better
- Reason: there is already error on \(1/x \)
The Use of Flags: An Example IV

- However, there is a small problem on using $1 / \text{pow}(x, -n)$
- If $\text{pow}(x, -n)$ causes underflow (i.e. when $x < 1, n < 0$), either underflow trap handler is called or underflow status flag is set \Rightarrow incorrect x^{-n} underflow, x^n overflow or within the range $(e_{\text{min}} = -126, 2^{-e_{\text{min}}} = 2^{126} < 2^{127} = 2^{e_{\text{max}}})$

Solution:

In the beginning, turn off overflow & underflow trap enable bits, save overflow & underflow status bits
Compute $1/pow(x, -n)$

If neither overflow nor underflow status is set \Rightarrow restore them

If one is set, restore & calculate $pow(1/x, -n)$, which causes correct exception to occur

- Practically the calculation of $pow()$ is more complicated
- In glibc-2.17/sysdeps/ieee754/dbl-64, e_pow.c has 420 lines
Another example: calculate arccos using arctan

\[\arccos x = 2 \arctan \sqrt{\frac{1 - x}{1 + x}} \]

\[\cos \theta = x = 2 \cos^2 \frac{\theta}{2} - 1 = 1 - 2 \sin^2 \frac{\theta}{2} \]

\[\cos \frac{\theta}{2} = \sqrt{\frac{x + 1}{2}}, \sin \frac{\theta}{2} = \sqrt{\frac{1 - x}{2}}, \tan \frac{\theta}{2} = \sqrt{\frac{1 - x}{1 + x}} \]

Hence

\[\arccos x = 2 \arctan \sqrt{\frac{1 - x}{1 + x}} \]
Consider $x = -1$
\[
\arctan(\infty) = \frac{\pi}{2} \Rightarrow \arccos(-1) = \pi
\]

A small problem:

\[
\frac{1-x}{1+x}
\]
causes the divide-by-zero flag set though
\[
\arccos(-1)
\]
is not exceptional

Solution: save divide-by-zero flag, restore it after
\[
\arccos
\]
computation