Floating-point operations I

- The science of floating-point arithmetics
- IEEE standard
- Reference

What every computer scientist should know about floating-point arithmetic, ACM computing survey, 1991

< □ > < □ > < □ > < □ > < □ > < □ >

Why learn more about floating-point operations I

Example:

• A one-variable problem

 $\min_{x} f(x)$ $x \ge 0$

- In your program, should you set an upper bound of x?
- ullet x in your program may be wrongly increased to ∞

イロト 不得 トイヨト イヨト

Why learn more about floating-point operations II

- What is the largest representable number in the computer?
- Is there anything called infinity?

Example:

• A ten-variable problem

$$\min f(x)$$
$$0 \le x_i, i = 1, \dots, 10$$

< □ > < □ > < □ > < □ > < □ > < □ >

Why learn more about floating-point operations III

- After the problem is solved, want to know how many are zeros?
- Should you use

 People said: don't do floating-point comparisons epsilon = 1.0e-12 ; for (i=0; i < 10; i++) if (x[i] <= epsilon) count++ ;

Why learn more about floating-point operations IV

How do you choose ϵ ?

• Is this true?

イロト 不得 トイヨト イヨト

Floating-point Formats I

- We know float (single): 4 bytes, double: 8 bytes Why?
- A floating-point system
 base β, precision p, significand (mantissa) d.d...d
- Example

$$egin{array}{rcl} 0.1 &=& 1.00 imes 10^{-1} & (eta = 10, p = 3) \ pprox & 1.1001 imes 2^{-4} & (eta = 2, p = 5) \end{array}$$

exponent: -1 and -4

Largest exponent e_{max}, smallest e_{min}

イロト 不問 トイヨト イヨト 二日

Floating-point Formats II

• β^p possible significands, $e_{\max} - e_{\min} + 1$ possible exponents

$$\lceil \log_2(e_{\max} - e_{\min} + 1) \rceil + \lceil \log_2(\beta^p) \rceil + 1$$

bits for storing a number 1 bit for \pm

- But the practical setting is more complicated See the discussion of IEEE standard later
- Normalized: $1.00 imes 10^{-1}$ (yes), $0.01 imes 10^{1}$ (no)
- Now most used normalized representation

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

Floating-point Formats III

but an issue is we cannot represent zero

- A natural way for 0: $1.0 \times \beta^{e_{\min}-1}$ This preserves the ordering
- Will use $p = 3, \beta = 10$ for most later explanation

Relative Errors and Ulps I

- When $\beta = 10, p = 3$, 3.14159 represented as 3.14×10^{0}
 - \Rightarrow error = 0.00159 = 0.159 \times 10 $^{-2}$, i.e. 0.159 units in the last place
 - 10^{-2} : unit of the last place
- ulps: unit in the last place
- relative error $0.00159/3.14159 \approx 0.0005$
- For a number $d.d...d \times \beta^e$, the largest error is

$$0.\underbrace{0.\ldots}_{p-1}\beta'\times\beta^e, \beta'=\beta/2$$

Relative Errors and Ulps II

• Error
$$= \frac{\beta}{2} \times \beta^{-p} \times \beta^{e}$$

 $1 \times \beta^{e} \leq \text{ original value } < \beta \times \beta^{e}$

relative error between

$$\frac{\frac{\beta}{2} \times \beta^{-p} \times \beta^{e}}{\beta^{e}} \quad \text{and} \quad \frac{\frac{\beta}{2} \times \beta^{-p} \times \beta^{e}}{\beta^{e+1}}$$
so
relative error $\leq \frac{\beta}{2}\beta^{-p}$ (1)
$$\frac{\beta}{2}\beta^{-p} = \beta^{-p+1}/2 \text{ is called machine epsilon}$$

Relative Errors and Ulps III

That is, the bound in (1)

• When a number is rounded to the closest, relative error bounded by ϵ

イロト イポト イヨト イヨト

ulps and ϵ l

•
$$p = 3$$
, $\beta = 10$

- Example: $x = 12.35 \Rightarrow \tilde{x} = 1.24 \times 10^{1}$ error = $0.05 = 0.005 \times 10^{1}$
- ulps = 0.01×10^{1} , $\epsilon = \frac{1}{2}10^{-2} = 0.005$
- error 0.5 ulps relative error $0.05/12.35 \approx 0.004 = 0.8\epsilon$
- $8x = 98.8, 8\tilde{x} = 9.92 \times 10^1$

error = 4.0 ulps

relative error $= 0.4/98.8 = 0.8\epsilon$.

• ulps and ϵ may be used interchangeably

(本部) (* 문) (* 문) (* 문)