
Optimized BLAS: an Example by Using
Block Algorithms I

Let’s test the matrix multiplication

A C program:

#define n 3000

double a[n][n], b[n][n], c[n][n];

int main()

{

int i, j, k;

for (i=0;i<n;i++)

Chih-Jen Lin (National Taiwan Univ.) 1 / 18



Optimized BLAS: an Example by Using
Block Algorithms II

for (j=0;j<n;j++) {

a[i][j]=1; b[i][j]=1;

}

for (i=0;i<n;i++)

for (j=0;j<n;j++) {

c[i][j]=0;

for (k=0;k<n;k++)

c[i][j] += a[i][k]*b[k][j];

}

Chih-Jen Lin (National Taiwan Univ.) 2 / 18



Optimized BLAS: an Example by Using
Block Algorithms III

}

Results:

cjlin@linux1:~$ gcc -O3 mat.c; time ./a.out

real 1m24.909s

user 1m24.534s

sys 0m0.193s

We do the same task on Matlab

To remove the effect of multi-threading, use

matlab -singleCompThread

Chih-Jen Lin (National Taiwan Univ.) 3 / 18



Optimized BLAS: an Example by Using
Block Algorithms IV

Results:

cjlin@linux1:~$ matlab -singleCompThread

>> n = 3000;

>> A = randn(n,n); B = randn(n,n);

>> tic; C = A*B; toc

Elapsed time is 1.708523 seconds.

An issue about timing is elapsed time versus CPU
time

Chih-Jen Lin (National Taiwan Univ.) 4 / 18



Optimized BLAS: an Example by Using
Block Algorithms V

>> A = randn(n,n); B = randn(n,n);

>> t = cputime; C = A*B; t = cputime -t

t =

1.3000

They are similar if no other jobs are running on this
machine.

Results of using multi-threading (the default of
MATLAB)

Chih-Jen Lin (National Taiwan Univ.) 5 / 18



Optimized BLAS: an Example by Using
Block Algorithms VI

cjlin@linux1:~$ matlab

>> n = 3000;

>> A = randn(n,n); B = randn(n,n);

>> tic; C = A*B; toc

Elapsed time is 0.426942 seconds.

>> A = randn(n,n); B = randn(n,n);

>> t = cputime; C = A*B; t = cputime -t

t =

Chih-Jen Lin (National Taiwan Univ.) 6 / 18



Optimized BLAS: an Example by Using
Block Algorithms VII

5.1200

We see that under the same setting of using a single
thread, Matlab is much faster than a code written
by ourselves.

Why ?

Optimized BLAS: an implementation that takes the
advantage of memory hierarchies

Data locality is exploited

Use the highest level of memory as possible

Chih-Jen Lin (National Taiwan Univ.) 7 / 18



Optimized BLAS: an Example by Using
Block Algorithms VIII

Block algorithms: a way to transfer sub-matrices
between different levels of storage

They localize operations to achieve good
performance

Chih-Jen Lin (National Taiwan Univ.) 8 / 18



Memory Hierarchy I

CPU

↓
Registers

↓
Cache

↓
Main Memory

↓
Secondary storage (Disk)

Chih-Jen Lin (National Taiwan Univ.) 9 / 18



↑: increasing in speed

↓: increasing in capacity

Chih-Jen Lin (National Taiwan Univ.) 10 / 18



Memory Management I

We assume that the computer has only two layers of
memory

main memory
secondary memory

Page fault: an operand is not available in main
memory and must be transported from secondary
memory

When moving things between layers, due to
initialization cost, we move a continuous segment of
data (called a page) instead of a single value

Chih-Jen Lin (National Taiwan Univ.) 11 / 18



Memory Management II

Usually if a page is moved to the main memory, it
overwrites page least recently used

An example: C = AB + C , n = 1, 024

Assumption: a page 65,536 doubles = 64 columns

16 pages for each matrix

48 pages for three matrices

Assumption: available memory 16 pages, matrices
access: column oriented

A =

[
1 2
3 4

]
Chih-Jen Lin (National Taiwan Univ.) 12 / 18



Memory Management III

column oriented: 1 3 2 4

row oriented: 1 2 3 4

access each row of A: 16 page faults, 1024/64 = 16

Approach 1:

for i =1:n

for j=1:n

for k=1:n

c(i,j) = a(i,k)*b(k,j)+c(i,j);

end

end

end

Chih-Jen Lin (National Taiwan Univ.) 13 / 18



Memory Management IV

We use a matlab-like syntax here

At each (i,j): each row a(i, 1:n) causes 16 page
faults

Total: 10242 × 16 page faults

at least 16 million page faults

Approach 2:

Chih-Jen Lin (National Taiwan Univ.) 14 / 18



Memory Management V

for j =1:n

for k=1:n

for i=1:n

c(i,j) = a(i,k)*b(k,j)+c(i,j);

end

end

end

For each j , access all columns of A

A needs 16 pages, but B and C take spaces as well

So A must be read for every j

Chih-Jen Lin (National Taiwan Univ.) 15 / 18



Memory Management VI

For each j , 16 page faults for A

1024× 16 page faults

C ,B : 16 page faults

What if we implement this approach in C?

Code:

#define n 3000

double a[n][n], b[n][n], c[n][n];

int main()

{

int i, j, k;

Chih-Jen Lin (National Taiwan Univ.) 16 / 18



Memory Management VII

for (i=0;i<n;i++)

for (j=0;j<n;j++) {

a[i][j]=1; b[i][j]=1;

c[i][j]=0;

}

for (j=0;j<n;j++) {

for (k=0;k<n;k++)

for (i=0;i<n;i++)

c[i][j] += a[i][k]*b[k][j];

}

Chih-Jen Lin (National Taiwan Univ.) 17 / 18



Memory Management VIII

}

Results:

cjlin@linux1:~$ gcc -O3 mat1.c; time ./a.out

real 4m20.247s

user 4m19.761s

sys 0m0.154s

Why is it even slower?

C is row-oriented instead of column-oriented

Thus we had implemented Approach 2 first and
then Approach 1

Chih-Jen Lin (National Taiwan Univ.) 18 / 18


