
Numerical Methods 2021 — Midterm 1

Solutions

Problem 1 (5 pts). Give the binary representation of −528.3125 under the IEEE standard.

Solution.
528.3125(base 10) = 1.0000100000101× 29(base 2)

1 10000001000 0000100000101 0 · · · 0︸ ︷︷ ︸
40 zeros

Problem 2 (35 pts). Consider a floating-point system with base β and precision p. In the class, we
show that the relative rounding error is bounded after using 1 additional guard digit. The original
theorem is stated below:

Using p+ 1 digits for x− y ⇒ relative rounding error < 2ε (ε : machine epsilon) (1)

In our proof, the procedure to calculate x− y is showed below. For example, when β = 10 and p = 3:

� Step 1: Given x = 2.03︸︷︷︸
p digits

and y = 1.51︸︷︷︸
p digits

×10−3.

� Step 2: Shift y to the same base of x, y = 0.00151

� Step 3: Truncate y to ȳ with p+ 1 precision, ȳ = 0.001︸ ︷︷ ︸
p+1 digits

.

� Step 4: z = x− ȳ = 2.029︸ ︷︷ ︸
p+1 digits

.

� Step 5: Round z to z̄ with p precision, z̄ = 2.03. The z̄ is the result of operation.

(a) (15 pts) In the proof of (1), we give a bound of |y − ȳ|

|y − ȳ| < (β − 1)(β−(p+1) + β−(p+2) + · · ·+ β−(p+k))

by assuming the truncation. But if we change truncation to rounding odd, then the bound in (1)
can be tighter. Besides, in the Step 5 we also consider using rounding odd. (Rounding odd
is round to nearest value if there is only one nearest value. When two nearest values exist, you
must also consider previous digit. If previous digit is even, round up. Otherwise, round down. For
example, when β = 10 and p = 1, 1.5 →

round
1, 1.51 →

round
2, 1.49 →

round
1 and 2.5 →

round
3. )

Redo the proof by showing that

relative rounding error ≤ (1 +
1

β
)ε

You can prove the theorem by discussing the following cases.
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� Case 1: Show that when x− y ≥ 1,

rel. rounding error ≤ (1 +
1

β
)ε.

� Case 2: Show that when x− ȳ ≤ 1,

rel. rounding error ≤ ε.

� Case 3: Show that when x− y < 1 and x− ȳ > 1, this case is impossible to happen.

Note that all details must be given.

(b) (10 pts) Consider p = 3 and β = 10 and assume x = x0.x1 . . . xp−1× β0. Give examples respectively
leading to the largest absolute rounding error of Case 1 and Case 2. Note that here we check
absolute rounding error instead of relative error. You must explain why your given x and y lead
to the largest error.

(c) (10 pts) If 2 guard digits are used, recalculate your examples in (b) and compare your error with
the one using exact computation then round.

Solution.

(a) WLOG, let x > y,
x = x0.x1x2x3 · · ·xp−2xp−1 (2)

and
y = 0.0 · · · 0yk · · · yp−1yp · · · yk+(p−1).

First we need to round y to ȳ with p+ 1 precision. After rounding odd is used, one can see that

ȳ = y + δ1, where |δ1| ≤
β

2
β−(p+1) =

1

β
ε. (3)

Calculate
z = x− ȳ

and round odd z to z̄ with p precision. The equality between z and z̄ is

z̄ = z + δ2, where |δ2| ≤
β

2
β−p = ε. (4)

The error between x− y and z̄ is

error = |x− y − z̄| = |x− y − (z + δ2)|
= |x− y − (x− ȳ + δ2)|
= |x− y − (x− (y + δ1) + δ2)|
= |x− y − x+ (y + δ1)− δ2|
= |δ1 − δ2|.

(5)

� Case 1 x− y ≥ 1:

rel. rounding error =
error

x− y
≤ |δ1 − δ2|

1
≤ |δ1|+ |δ2| = (1 +

1

β
)ε
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� Case 2 x− ȳ ≤ 1: In this case, δ2 = 0 because z can store all its digits within p precision. The
relative rounding error is

rel. rounding error =
|δ1|
x− y

.

The smallest x − y happens when x is as small as possible and y is as large as possible. The
smallest possible x is

x = 1.000 · · · 000

and the largest possible y is
y = 0.0 · · · 0ykyk+1 · · · yk+p−1,

where yi = β−1 ∀i = {k, · · · , k+(p−1)}. Therefore, given any x and y, the difference between
them is

x− y ≥ (β − 1)(β−1 + β−2 + · · ·+ β−(k−1)) (6)

From (6),

rel. rounding error =
|δ1|
x− y

≤
1
β
ε

(β − 1)(β−1 + β−2 + · · ·+ β−(k−1))

≤ ε
1

(β − 1)(1 + β−1 + · · ·+ β−(k−2))

< ε

The last inequality comes from

1

(β − 1)(1 + β−1 + · · ·+ β−(k−2))
<

1

β − 1
≤ 1.

� Case 3 x− ȳ > 1 and x− y < 1: We show that this case is impossible. Given x− ȳ > 1, this
implies that

x− ȳ ≥ 1. 0 · · · 0︸ ︷︷ ︸
p−1 zeros

1.

Because

|y − ȳ| ≤ β

2
β−(p+1) =

1

2
β−p < 0. 0 · · · 0︸ ︷︷ ︸

p−1 zeros

1,

this implies that
x− y ≥ 1.

Therefore, case 3 can not happen.

In the end, from case 1, 2, and 3. We conclude that that bound can be at least (1 + 1
β
)ε.

(b) Solution is not unique.

� Case 1: From (3), (4) and (5), we have

error = |δ1 − δ2| ≤ |δ1|+ |δ2| = 0.0055
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The maximum absolute error in case 1 is 0.0055.

x = 1.01 and y = 0.0055

ȳ = 0.005

z = x− ȳ = 1.005

z̄ = 1.01

err = |x− y − z̄| = |1.0045− 1.01| = 0.0055

� Case 2: Because δ2 = 0 in case 2,

error = |δ1 − δ2| = |δ1| = 0.0005

The maximum absolute error in case 2 is 0.0005.

x = 1.00 and y = 0.0005

ȳ = 0.001

z = x− ȳ = 0.999

z̄ = 9.99× 10−1

err = |x− y − z̄| = |0.9995− 0.999| = 0.0005

(c) � Case 1: Use 2 gaurd digit.

x = 1.01 and y = 0.0055

ȳ = 0.0055

z = x− ȳ = 1.0045

z̄ = 1.00

err = |x− y − z̄| = |1.0045− 1.01| = 0.0055

Use exact computation.

x = 1.01 and y = 0.0055

z = x− y = 1.0045

z̄ = 1.00

err = |x− y − z̄| = |1.0045− 1.01| = 0.0055

The error is the same between 2 guard digits and exact computation.

� Case 2: Use 2 guard digit.

x = 1.00 and y = 0.0005

ȳ = 0.0005

z = x− ȳ = 0.9995

z̄ = 9.99× 10−1

err = |x− y − z̄| = |0.9995− 0.999| = 0.0005
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Use exact computation.

x = 1.00 and y = 0.0005

z = x− y = 0.9995

z̄ = 9.99× 10−1

err = |x− y − z̄| = |0.9995− 0.999| = 0.0005

The error is the same between 2 guard digits and exact computation.

Problem 3 (25 pts). Consider the following matrix
−8 4 −18 4
6 −8 6 −5
−12 6 18 −24

4 −16 −6 14


Conduct LU factorization with pivoting.

(a) (15 pts) Give
P1,M1, P2,M2, P3,M3

such that
M3P3M2P2M1P1A = U.

(b) (10 pts) What are P,L, U such that
PA = LU?

Hint: In your U , there is only one fraction number, while others are integers.

Solution.

(a) Step 1: The first pivot is −12, so we should switch the first and third rows.

P1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , P1A =


−12 6 18 −24

6 −8 6 −5
−8 4 −18 4
4 −16 −6 14


Step 2: Do the Gaussian elimination on the first column.

M1 =


1 0 0 0

1/2 1 0 0
−2/3 0 1 0
1/3 0 0 1

 , M1P1A =


−12 6 18 −24

0 −5 15 −17
0 0 −30 20
0 −14 0 6


Step 3: The second pivot is −14, so we should switch the second and fourth rows.

P2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , P2M1P1A =


−12 6 18 −24

0 −14 0 6
0 0 −30 20
0 −5 15 −17


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Step 4: Do the Gaussian elimination on the second column.

M2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −5/14 0 1

 , M2P2M1P1A =


−12 6 18 −24

0 −14 0 6
0 0 −30 20
0 0 15 −134/7


Step 5: The third pivot is −30, so there is no rows need to switch.

P3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P3M2P2M1P1A =


−12 6 18 −24

0 −14 0 6
0 0 −30 20
0 0 15 −134/7


Step 6: Do the Gaussian elimination on the third column.

M3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/2 1

 , M3P3M2P2M1P1A =


−12 6 18 −24

0 −14 0 6
0 0 −30 20
0 0 0 −64/7


(b) We have

P = P3P2P1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


and

U =


−12 6 18 −24

0 −14 0 6
0 0 −30 20
0 0 0 −64/7


by (a). We can calculate L by

[
(P3P2M

−1
1 ):,1 (P3M

−1
2 ):,2 (M−1

3 ):,3 (M−1
4 ):,4

]
=


1 0 0 0
−1/3 1 0 0
2/3 0 1 0
−1/2 5/14 −1/2 1

 ,
where

M−1
1 =


1 0 0 0
−1/2 1 0 0
2/3 0 1 0
−1/3 0 0 1

 , M−1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 5/14 0 1

 ,

M−1
3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/2 1

 , M−1
4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Problem 4 (15 pts). Assume we have a floating-point system with

β = 10 and p = 3.

In the proof of a theorem we have checked what happened in calculating

x0 = x, x1 = (x0 ⊕ y)	 y, . . . , xn = (xn−1 ⊕ y)	 y

by using the rounding up scheme.

(a) (5 pts) Consider the same
x = 1.00 and y = 0.555

Analyze the results by assuming this rounding down strategy:

0, 1, 2, 3, 4, 5⇒ down

6, 7, 8, 9⇒ up

(b) (10 pts) Under the same rounding strategy in (a), is the statement

x1 = x2 = · · · , ∀x, y (7)

correct? Prove it if you think (7) is true. Otherwise, please give an example show us (7) is false.

Solution.

(a)

x0 =1.00

x1 =(x0 ⊕ 0.555)	 0.555 = 1.55	 0.555 = 0.995

x2 =(x1 ⊕ 0.555)	 0.555 = 1.55	 0.555 = 0.995

Therefore, x1 = x2 = · · · = xn = · · · = 0.995

Common mistake: Many round 0.995 to 0.99. Note that it can be stored under the system.

(b) Let us take
x = 1.03, y = 0.555

Thus, the following sequence

x1 =(1.03⊕ 0.555)	 0.555 = 1.58	 0.555 = 1.02

x2 =(1.02⊕ 0.555)	 0.555 = 1.57	 0.555 = 1.01

x3 =(1.01⊕ 0.555)	 0.555 = 1.56	 0.555 = 1.00

x4 =(1.00⊕ 0.555)	 0.555 = 1.55	 0.555 = 0.995

x5 =(0.995⊕ 0.555)	 0.555 = 1.55	 0.555 = 0.995

implies that (7) is false.

Problem 5 (20 pts). Consider the following matrix:

C =


25 −20 −10 30
−20 20 6 −38
−10 6 69 −29
30 −38 −29 94


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(a) (10 pts) Show by the definition

C is positive definite ⇔ xTCx > 0,∀x 6= 0

that this matrix is only positive semi-definite but not positive definite.

(b) (10 pts) Do the outer-product form of Cholesky factorization and show when/where it fails.

Solution.

(a) From the result in (b), it is sufficient to find
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

Λ


5 −4 −2 6
0 2 −1 −7
0 0 8 −3
0 0 0 1


︸ ︷︷ ︸

LT


x1

x2

x3

x4

 =


0
0
0
0

 .

That is, 
5x1 − 4x2 − 2x3 + 6x4 = 0

2x2 − 1x3 − 7x4 = 0
8x3 − 3x4 = 0

(8)

Let us take

x3 =
3

8
x4

so (8) is equivalent to
5x1 − 4x2 − 2 · 3/8x4 + 6x4 = 0

2x2 − 1 · 3/8x4 − 7x4 = 0
x3 = 3/8 · x4

≡


5x1 − 4x2 + 21/4 · x4 = 0

2x2 − 59/8 · x4 = 0
x3 = 3/8 · x4

(9)

Thus, we take

x2 =
59

16
x4

and (9) is equivalent to
5x1 − 4 · 59/16 · x4 + 21/4 · x4 = 0

x2 = 59/16 · x4

x3 = 3/8 · x4

≡


5x1 − 19/2 · x4 = 0

x2 = 59/16 · x4

x3 = 3/8 · x4

(10)

By (10), we know that
Cx = 0

as

x =


19/10 · t
59/16 · t
3/8 · t
t

 , ∀t 6= 0

As we take
t = 80,
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we have
x = [152, 295, 30, 80]T

such that
xTCx = 0.

Therefore, C is a semi-definite positive matrix.

(b) Let us take
C̃1 = C

Step 1: The first pivot is 25, so we can take

l1 =
1√
25
· [25,−20,−10,−30]T = [5,−4,−2, 6]T .

Thereby,

C̃2 = C̃1 − l1 · lT1 =


25 −20 −10 30
−20 20 6 −38
−10 6 69 −29
30 −38 −29 94

−


25 −20 −10 30
−20 16 8 −24
−10 8 4 −12
30 −24 −12 36



=


0 0 0 0
0 4 −2 −14
0 −2 65 −17
0 −14 −17 58


and

C =


5 0 0 0
−4 1 0 0
−2 0 1 0
6 0 0 1




1 0 0 0
0 4 −2 −14
0 −2 65 −17
0 −14 −17 58




5 −4 −2 6
0 1 0 0
0 0 1 0
0 0 0 1

 .
Step 2: The second pivot is 4, so we can take

l2 =
1√
4
· [0, 4,−2,−14]T = [0, 2,−1,−7]T .

Thus,

C̃3 = C̃2 − l2 · lT2 =


0 0 0 0
0 4 −2 −14
0 −2 65 −17
0 −14 −17 58

−


0 0 0 0
0 4 −2 −14
0 −2 1 7
0 −14 7 49



=


0 0 0 0
0 0 0 0
0 0 64 −24
0 0 −24 9


and

C =


5 0 0 0
−4 2 0 0
−2 −1 1 0
6 −7 0 1




1 0 0 0
0 1 0 0
0 0 64 −24
0 0 −24 9




5 −4 −2 6
0 2 −1 −7
0 0 1 0
0 0 0 1

 .
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Step 3: The third pivot is 64, so we can take

l3 =
1√
64
· [0, 0, 64,−24]T = [0, 0, 8,−3]T .

Thus,

C̃4 = C̃3 − l3 · lT3 =


0 0 0 0
0 0 0 0
0 0 64 −24
0 0 −24 9

−


0 0 0 0
0 0 0 0
0 0 64 −24
0 0 −24 9



=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and

C =


5 0 0 0
−4 2 0 0
−2 −1 8 0
6 −7 −3 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




5 −4 −2 6
0 2 −1 −7
0 0 8 −3
0 0 0 1

 .
Step 4: The fourth pivot is 0, and we get an error!
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