
Numerical Methods 2021 — Final Exam

Solutions

Problem 1 (20 pts). Consider the following four pairs of (x, f(x)):

(0, 3), (1, 0), (2, 3), (3, 0).

(a) (5 pts) Find the Lagrange Polynomial. You must do the calculation to obtain a final form of

a3x
3 + a2x

2 + a1x+ a0.

(b) (15 pts) Find the spline by the following boundary conditions

s′′0(x0) = 0, s′′2(x3) = 0.

You must show details of every step in calculating aj, bj, cj and dj.

Solution.

(a) Lagrange polynomial:

P (x) =
3∑

k=0

Ln,k(x)f(xk)

=
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f(x0) +

(x− x0)(x− x2)(x− x3)
(x1 − x0)(x1 − x2)(x1 − x3)

f(x1)

+
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f(x2) +

(x− x0)(x− x1)(x− x2)
(x3 − x0)(x3 − x1)(x3 − x2)

f(x3)

=
(x− 1)(x− 2)(x− 3)

(−1)(−2)(−3)
3 +

(x− 0)(x− 1)(x− 3)

(2)(1)(−1)
3

=
−(x− 1)(x− 2)(x− 3)− 3(x− 0)(x− 1)(x− 3)

2

=
−4x3 + 18x2 − 20x+ 6

2
= −2x3 + 9x2 − 10x+ 3

(b) We have to determine aj, bj, cj and dj of

sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3,

where j = 0, 1, 2.
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� Define hj
h0 = x1 − x0 = 1, h1 = x2 − x1 = 1, h2 = x3 − x2 = 1.

� Compute aj

a0 = f(0) = 3, a1 = f(1) = 0, a2 = f(2) = 3, a3 ≡ f(3) = 0.

� Compute cj From the boundary condition,

s′′0(0) = 2c0 = 0⇒ c0 = 0

and

c3 ≡
s′′2(3)

2
= 0.

Compute c1 and c2 by

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3

hj
(aj+1 − aj)−

3

hj−1
(aj − aj−1)

where j = 1, 2. We have

h0c0 + 2(h0 + h1)c1 + h1c2 =
3

h1
(a2 − a1)−

3

h0
(a1 − a0)

h1c1 + 2(h1 + h2)c2 + h2c3 =
3

h2
(a3 − a2)−

3

h1
(a2 − a1).

That is,

4c1 + c2 = 3(a2 − a1)− 3(a1 − a0) = 3× 3− 3× (−3) = 18

c1 + 4c2 = 3(a3 − a2)− 3(a2 − a1) = 3× (−3)− 3× 3 = −18.

We have
c1 = 6, c2 = −6.

� Compute bj

bj =
1

hj
(aj+1 − aj)−

hj
3

(2cj + cj+1),

where j = 0, 1, 2. We have

b0 =
1

h0
(a1 − a0)−

h0
3

(2c0 + c1) = −3− 1

3
(6) = −5

b1 =
1

h1
(a2 − a1)−

h1
3

(2c1 + c2) = 3− 1

3
(6) = 1

b2 =
1

h2
(a3 − a2)−

h2
3

(2c2 + c3) = −3− 1

3
(−12) = 1.

� Compute dj

dj =
cj+1 − cj

3hj
,

where j = 0, 1, 2. We have

d0 =
c1 − c0

3h0
=

6

3
= 2

d1 =
c2 − c1

3h1
=
−12

3
= −4

d2 =
c3 − c2

3h2
=

6

3
= 2
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� Finally, we have

s0(x) = a0 + b0(x− x0) + c0(x− x0)2 + d0(x− x0)3

= 3 +−5(x− 0) + 0(x− 0)2 + 2(x− 0)3

= 2x3 − 5x+ 3

s1(x) = a1 + b1(x− x1) + c1(x− x1)2 + d1(x− x1)3

= 0 + 1(x− 1) + 6(x− 1)2 +−4(x− 1)3

= (x− 1) + 6(x− 1)2 − 4(x− 1)3

= −4x3 + 18x2 − 23x+ 9

s2(x) = a2 + b2(x− x2) + c2(x− x2)2 + d2(x− x2)3

= 3 + 1(x− 2) +−6(x− 2)2 + 2(x− 2)3

= 3 + (x− 2)− 6(x− 2)2 + 2(x− 2)3

= 2x3 − 18x2 + 49x− 39

Problem 2 (10 pts). Consider the following linear regression

min
a
F (a) =

4∑
i=1

(a0 + a1xi1 + a2xi2 − yi)2

Give an example with

xi =

[
xi1
xi2

]
6= xj =

[
xj1
xj2

]
, ∀i, j

such that the resulting matrix in the linear system is positive semi-definite but not positive definite.
You must also show the linear system and explain that it is only positive semi-definite.

Solution. Let us calculate the gradient as

∇aF =
4∑

i=1

 2(a0 + a1 + xi1 + a2xi2 − yi)
2(a0 + a1 + xi1 + a2xi2 − yi)xi1
2(a0 + a1 + xi1 + a2xi2 − yi)xi2


and the Hessian matrix can be calculated as

∇2
aF =

4∑
i=1

 2 2xi1 2xi2
2xi1 2x2i1 2xi1xi2
2xi2 2xi1xi2 2x2i2


The determinant of ∇2

aF is

1

8
(4Sx·1x·1Sx·2x·2 + 2Sx·1Sx·2Sx·1x·2 − Sx·2Sx·2Sx·1x·1 − Sx·1Sx·1Sx·2x·2 − 4Sx·1x·2Sx·1x·2 , ) (1)

where

Sx·s =
4∑

i=1

xis

Sx·sx·t =
4∑

i=1

xisxit
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for all s, t ∈ {1, 2}. We can take

x1 =(1, 1)

x2 =(1,−1)

x3 =(1, 2)

x4 =(1,−2)

such that
Sx·2 = Sx·1x·2 = 0,

and (1) is equal to

1

8
(4Sx·1x·1Sx·2x·2 − Sx·1Sx·1Sx·2x·2) =

1

8
(4 · 4 · 10− 4 · 4 · 10) = 0.

Furthermore, since

∇2
aF = 2 ·

 4 Sx·1 Sx·2

Sx·1 Sx·1x·1 Sx·1x·2

Sx·2 Sx·1x·2 Sx·2x·2

 = 2 ·

4 4 0
4 4 0
0 0 10

 ,
we have

aT∇2
aFa = 2

(
4(a0 + a1)

2 + 10a22
)
≥ 0.

Therefore, we can say that ∇2
aF is positive semi-definite but not positive definite.

Problem 3 (30 pts). We mention that the most commonly used setting of spline is by piece-wise degree-
3 polynomials, but now we are interested in using degree-4 polynomials. Naturally, we additionally
consider

s′′′j+1(xj+1) = s′′′j (xj+1), j = 0, · · · , n− 2.

(a) (5 pts) Without considering boundary conditions, what are number of equations and number of
variables? You need to list those equations with the functions sj, for j = 0, . . . , n− 1.

(b) (10 pts) Consider the definition of sj(x)

sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3 + ej(x− xj)4.

Please list the equations in (a) with the variables aj, bj, cj, dj and ej. You can define

hj = xj+1 − xj

to simplify these equations.

(c) (15 pts) Please simplify from your equations in (b) by

i) Represent and subsitute ej with dj and hj, for j = 0, . . . , n−1. Please show the equations after
this simplification.

ii) Represent and subsitute bj with aj, cj, dj and hj, for j = 0, . . . , n−1. Please show the equations
after this simplification.

Solution.
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(a) We have the following equations

sj(xj) =f(xj), j = 0, . . . , n− 1 (2)

sn−1(xn) =f(xn), (3)

sj(xj+1) =sj+1(xj+1), j = 0, . . . , n− 2 (4)

s′j(xj+1) =s′j+1(xj+1), j = 0, . . . , n− 2 (5)

s′′j (xj+1) =s′′j+1(xj+1), j = 0, . . . , n− 2 (6)

s′′′j (xj+1) =s′′′j+1(xj+1), j = 0, . . . , n− 2, (7)

so we have 5n− 3 equations. For the variables, our sj(x) can be defined by

aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3 + ej(x− xj)4.

Thus, we have 5n variables.

(b) Case 1: The equations (2) becomes

aj = f(xj), j = 0, . . . , n− 1.

Case 2: The equation (3) becomes

an−1 + bn−1hn−1 + cn−1h
2
n−1 + dn−1h

3
n−1 + en−1h

4
n−1 = f(xn)

Case 3: The equations (4) becomes

aj+1 = aj + bjhj + cjh
2
j + djh

3
j + ejh

4
j , j = 0, . . . , n− 2.

Case 4: The equations (5) becomes

bj+1 = bj + 2cjhj + 3djh
2
j + 4ejh

3
j , j = 0, . . . , n− 2.

Case 5: The equations (6) becomes

2cj+1 = 2cj + 6djhj + 12ejh
2
j , j = 0, . . . , n− 2.

Case 6: The equations (7) becomes

6dj+1 = 6dj + 24ejhj, j = 0, . . . , n− 2.

(c) From (b)’s Case 6, we can find that

ej =
dj+1 − dj

4hj
, j = 0, . . . , n− 2.

Therefore, we can subsitute the variable ej in the other equations with dj and dj+1. That is, we
have

aj+1 =aj + bjhj + cjh
2
j + djh

3
j +

dj+1 − dj
4

h3j , j = 0, . . . , n− 2 (8)

bj+1 =bj + 2cjhj + 3djh
2
j + (dj+1 − dj)h2j , j = 0, . . . , n− 2

2cj+1 =2cj + 6djhj + 3(dj+1 − dj)hj, j = 0, . . . , n− 2
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Next, we make (8) be

bj =
aj+1 − aj

hj
− cjhj −

dj+1 + 3dj
4

h2j , j = 0, . . . , n− 2

Thereby, we can subsitute bj in the equations with cj and dj. That is, we have

aj+2 − aj+1

hj+1

− cj+1hj+1 −
dj+2 + 3dj+1

4
h2j+1

=
aj+1 − aj

hj
− cjhj −

dj+1 + 3dj
4

h2j + 2cjhj + 3djh
2
j + (dj+1 − dj)h2j , j = 0, . . . , n− 2

2cj+1 =2cj + 6djhj + 3(dj+1 − dj)hj, j = 0, . . . , n− 2

Problem 4 (10 pts). Consider continuous least square. The function

f(x) = x2

is approximated by
P1(x) = a1x+ a0

over
x ∈ [0, 1].

Solve the linear system to get P1.

Solution.
Our minimization problem is

min
a

∫ 1

0

[P1(x)− f(x)]2dx

= min
a

∫ 1

0

[a1x+ a0 − x2]2dx

= min
a

∫ 1

0

(x4 + a20 + a21x
2 − 2a1x

3 + 2a1a0x− 2a0x
2)dx

= min
a

∫ 1

0

x4dx+

∫ 1

0

a20dx+

∫ 1

0

a21x
2dx−

∫ 1

0

2a1x
3dx+

∫ 1

0

2a1a0xdx−
∫ 1

0

2a0x
2dx

= min
a

(
1

5
+ a20 +

1

3
a21 −

1

2
a1 + a1a0 −

2

3
a0

)
Let us take

g(a) =

(
1

5
+ a20 +

1

3
a21 −

1

2
a1 + a1a0 −

2

3
a0

)
and utilize

∇ag = 0 (9)

to get the solution. The linear system (9) is[
2a0 + a1 − 2/3

2/3 · a1 − 1/2 + a0

]
=

[
0
0

]
After we solving it, we can get the solution

a = (
−1

6
, 1).
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Problem 5 (30 pts). Given a function

f(x) =
2

π
x,

approximate f(x) with a Fourier series with n term

sn(x) =
a0 + an cosnx

2
+

n−1∑
k=1

(
ak cos kx+ bk sin kx

)
and 2m points

(x0, f(x0)), · · · , (x2m−1, f(x2m−1))

where

xk = −π +
k

m
π.

(a) (15 pt) Given m = n = 2, in fast Fourier transform (FFT), we show that we can calculate

c = Fy.

Show F and corresponding c. (Hint: Euler’s formula: eix = cosx+ i sinx)

(b) (5 pt) Calculate
a0, a1, a2

and
b1

from c.

(c) (10 pt) Decompose F to a sequence of matrix products,

F = At · · ·A1P

Solution.

(a) Let

δ = e
−iπ
m = e

−iπ
2 = cos (−π

2
) + i sin (−π

2
) = −i.

The F is

F =


1 1 1 1
1 δ1 δ2 δ3

1 δ2 δ4 δ6

1 δ3 δ6 δ9

 =


1 1 1 1
1 δ −1 −δ
1 −1 1 −1
1 −δ −1 δ

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 ,
because δ = −i.
The 2m points are

(−π,−2), (−1

2
π,−1), (0, 0), (

1

2
π, 1).

Then, we have

y =


−2
−1
0
1


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and

c = Fy =


−2

−2 + 2i
−2

−2− 2i

 =


−2
−2
−2
−2

+


0
2
0
−2

 i
(b) From

ak = Re(
ck(−1)k

m
) = Re(

ck(−1)k

2
)

and

bk = − Im(
ck(−1)k

m
) = − Im(

ck(−1)k

2
).

We have

a0 =
−2(−1)0

2
= −1,

a1 =
−2(−1)1

2
= 1,

a2 =
−2(−1)2

2
= −1,

and

b1 = −2(−1)1

2
= −(−1) = 1.

(c) From
t = log 2m = log 4 = 2,

we know that
F = A2A1P.

Now, we derive Ak. When k = 2, we have

L = 22 = 4, r =
2m

L
=

4

4
= 1.

and

A2 = Ir ⊗BL

= I1 ⊗B4

=
[
1
]
⊗
[
I2 Ω2

I2 −Ω2

]
, where Ω2 =

[
1 0
0 δ

]

=


1 0 1 0
0 1 0 δ
1 0 −1 0
0 1 0 −δ


When k = 1, we have

L = 21 = 2, r =
2m

L
= 2.
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and

A1 = Ir ⊗BL

= I2 ⊗B2

=

[
1 0
0 1

]
⊗
[
I1 Ω1

I1 −Ω1

]
, where Ω1 =

[
1
]

=


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


The permutation is the reverse of each column binary representation.

00→ 00 column 0 swap to column 0

01→ 10 column 1 swap to column 2

10→ 01 column 2 swap to column 1

11→ 11 column 3 swap to column 3

Therefore, we have

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



F = A2A1P

=


1 0 1 0
0 1 0 δ
1 0 −1 0
0 1 0 −δ




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

P

=


1 1 1 1
1 −1 δ −δ
1 1 −1 −1
1 −1 −δ δ

P

=


1 1 1 1
1 −1 δ −δ
1 1 −1 −1
1 −1 −δ δ




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



=


1 1 1 1
1 δ −1 −δ
1 −1 1 −1
1 −δ −1 δ


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