Most numerical programs do similar operations
90% time is at 10% of the code
If these 10% of the code is optimized, programs will be fast
Frequently used subroutines should be available
For numerical computations, common operations can be easily identified
Example:
daxpy(n, alpha, p, inc, w, inc);
daxpy(n, malpha, q, inc, r, inc);

rtr = ddot(n, r, inc, r, inc);
rnorm = sqrt(rtr);
tnorm = sqrt(ddot(n, t, inc, t, inc));

- ddot: inner product
- daxpy: $ax + y$, x, y are vectors and a is a scalar
- If they are subroutines ⇒ several for loops
- The first BLAS paper:

ACM Trans. Math. Soft.: a major journal on numerical software

- Become de facto standard for the elementary vector operations

(http://www.netlib.org/blas/)

Faster code than what you write
Netlib (http://www.netlib.org) is the largest site which contains freely available software, documents, and databases of interest to the numerical, scientific computing, and other communities (starting even before 1980). Interfaces from e-mail, ftp, gopher, x-based tool, to WWW

Level 1 BLAS includes:
dot product
constant times a vector plus a vector
rotation (don’t need to know what this is now)
copy vector \(x \) to vector \(y \)
swap vector \(x \) and vector \(y \)
length of a vector \((\sqrt{x_1^2 + \cdots + x_n^2}) \)
sum of absolute values \((|x_1| + \cdots |x_n|) \)
constant times a vector
index of element having maximum absolute value

Programming convention
\[
dw = \text{ddot}(n, dx, \text{incx}, dy, \text{incy})
\]
BLAS: Basic Linear Algebra Subroutines

VI

\[w = \sum_{i=1}^{n} dx_{1+(i-1)incx} dy_{1+(i-1)incy} \]

Example:

\[dw = \text{ddot}(n, dx, 2, dy, 2) \]

\[w = dx_1 dy_1 + dx_3 dy_3 + \cdots \]

- \text{sdot} is single precision, \text{ddot} is for double precision
- \(y = ax + y \)
 - call \text{daxpy}(n, da, dx, incx, dy, incy)
To include which subroutines: difficult to make decisions

C and Fortran interface

C calls Fortran:

\[rtr = \text{ddot}__(&n, r, &inc, r, &inc); \]

C calls C:

\[rtr = \text{ddot}(n, r, inc, r, inc); \]

Traditionally they are written in Fortran
ddot_: calling Fortran subroutines (machine dependent)
&n: call by reference for Fortran subroutines
- Arrays: both call by reference
 - C: start with 0, Fortran: with 1
 - Should not cause problems here
- There is CBLAS interface
- For example, on a linux computer
$ ls /usr/lib| grep blas
libblas
libblas.a
libblas.so
libblas.so.3
libblas.so.3gf
libcblas.so.3
libcblas.so.3gf
libf77blas.so.3
libf77blas.so.3gf

.a: static library, .so: dynamic library, .3 versus .3gf: g77 versus gfortran
The original BLAS contains only $O(n)$ operations.
That is, vector operations
Matrix-vector product takes more time

Level 2 BLAS involves $O(n^2)$ operations, n size of matrices

Level 2 BLAS II

- Matrix-vector product

\[Ax : (Ax)_i = \sum_{j=1}^{n} A_{ij} x_j, \quad i = 1, \ldots, m \]

Like \(m \) inner products. However, inefficient if you use level 1 BLAS to implement this.

- Scope of level 2 BLAS:

- Matrix-vector product

\[y = \alpha Ax + \beta y, \quad y = \alpha A^T x + \beta y, \quad y = \alpha \bar{A}^T x + \beta y \]
Level 2 BLAS III

\(\alpha, \beta \) are scalars, \(x, y \) are vectors, \(A \) is a matrix

\[
 x = T x, \quad x = T^T x, \quad x = \bar{T}^T x
\]

\(x \) vector, \(T \) lower or upper triangular matrix

If \(A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \), the lower is \(\begin{bmatrix} 2 & 0 \\ 4 & 5 \end{bmatrix} \)

- Rank-one and rank-two updates

\[
 A = \alpha xy^T + A, \quad H = \alpha x\bar{y}^T + \bar{\alpha}y\bar{x}^T + H
\]

\(H \) is a Hermitian matrix (\(H = \bar{H}^T \), symmetric for real numbers)

rank: # of independent rows (columns) of a matrix

column rank = **row rank**
$xy^T \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$ is a rank one matrix

n^2 operations

$xy^T + yx^T$ is a rank-two matrix

$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 4 & 8 \end{bmatrix}$

Solution of triangular equations
The solution

\[x_1 = y_1 / T_{11} \]
\[x_2 = (y_2 - T_{21} x_1) / T_{22} \]
\[x_3 = (y_3 - T_{31} x_1 - T_{32} x_2) / T_{33} \]
Number of multiplications/divisions:

\[1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \]
Level 3 BLAS I

- Things involve $O(n^3)$ operations
- Matrix-matrix products
 \[C = \alpha AB + \beta C, \quad C = \alpha A^T B + \beta C, \]
 \[C = \alpha AB^T + \beta C, \quad C = \alpha A^T B^T + \beta C \]
- Rank-k and rank-2k updates
Level 3 BLAS II

- Multiplying a matrix by a triangular matrix
 \[B = \alpha TB, \ldots \]

- Solving triangular systems of equations with multiple right-hand side:
 \[B = \alpha T^{-1}B, \ldots \]

- Naming conversions: follows the conventions of the level 2

- No subroutines for solving general linear systems or eigenvalues
 They are in the package LAPACK described later
Optimized BLAS: an Example by Using Block Algorithms I

- Let’s test the matrix multiplication
- A C program:
  ```c
  #define n 2000
  double a[n][n], b[n][n], c[n][n];

  int main()
  {
    int i, j, k;
    for (i=0; i<n; i++)
      ...
  }
  ```
for (j=0; j<n; j++) {
 a[i][j]=1; b[i][j]=1;
}

for (i=0; i<n; i++)
 for (j=0; j<n; j++) {
 c[i][j]=0;
 for (k=0; k<n; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
A Matlab program

```matlab
n = 2000;
A = randn(n,n); B = randn(n,n);
t = cputime; C = A*B; t = cputime - t
```

To remove the effect of multi-threading, use `matlab -singleCompThread`

Timing is an issue

Elapsed time versus CPU time
cjlin@linux1:~$ matlab -singleCompThread

>> a = randn(3000,3000); tic; c = a*a; toc
Elapsed time is 4.520684 seconds.

>> a = randn(3000,3000); t=cputime; c = a*a; t=cputime-t

t =
 4.3500
Optimized BLAS: an Example by Using Block Algorithms V

cjlin@linux1:~$ matlab
>> a = randn(3000,3000); tic; c = a*a; toc
Elapsed time is 1.180799 seconds.
>> a = randn(3000,3000); t = cputime; c = a*a; t = cputime - t

t =

 8.4400

Matlab is much faster than a code written by ourselves. Why?
Optimized BLAS: an Example by Using Block Algorithms VI

- Optimized BLAS: the use of memory hierarchies
- Data locality is exploited
- Use the highest level of memory as possible
- Block algorithms: transferring sub-matrices between different levels of storage
 localize operations to achieve good performance
Memory Hierarchy I

CPU
↓
Registers
↓
Cache
↓
Main Memory
↓
Secondary storage (Disk)
↑: increasing in speed
↓: increasing in capacity
Memory Management I

- Page fault: operand not available in main memory, transported from secondary memory (usually) overwrites page least recently used
- I/O increases the total time
- An example: $C = AB + C$, $n = 1,024$
- Assumption: a page 65,536 doubles = 64 columns
- 16 pages for each matrix
- 48 pages for three matrices
Assumption: available memory 16 pages, matrices access: column oriented

\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

column oriented: 1 3 2 4
row oriented: 1 2 3 4

access each row of \(A \): 16 page faults, \(\frac{1024}{64} = 16 \)

Assumption: each time a continuous segment of data into one page

Approach 1: inner product
for i =1:n
 for j=1:n
 for k=1:n
 c(i,j) = a(i,k)*b(k,j)+c(i,j);
 end
 end
end

We use a matlab-like syntax here

- At each (i,j): each row a(i, 1:n) causes 16 page faults
Total: $1024^2 \times 16$ page faults
- at least 16 million page faults
- Approach 2:

  ```matlab
  for j =1:n
      for k=1:n
          for i=1:n
              c(i,j) = a(i,k)*b(k,j)+c(i,j);
          end
      end
  end
  ```
For each j, access all columns of A
 A needs 16 pages, but B and C take spaces as well
 So A must be read for every j

For each j, 16 page faults for A
 1024×16 page faults

$C, B : 16$ page faults

Approach 3: block algorithms ($nb = 256$)
for j = 1:nb:n
 for k=1:nb:n
 for jj=j:j+nb-1
 for kk=k:k+nb-1
 c(:,jj) = a(:,kk)*b(kk,jj)+c(:,jj);
 end
 end
 end
end
Note that we calculate

\[
\begin{bmatrix}
A_{11} & \cdots & A_{14} \\
\vdots & & \vdots \\
A_{41} & \cdots & A_{44}
\end{bmatrix}
\begin{bmatrix}
B_{11} & \cdots & B_{14} \\
\vdots & & \vdots \\
B_{41} & \cdots & B_{44}
\end{bmatrix}
= \begin{bmatrix}
A_{11}B_{11} + \cdots + A_{14}B_{41} & \cdots \\
\vdots & \ddots & \ddots
\end{bmatrix}
\]
Memory Management VIII

- Each block: 256×256

\[
C_{11} = A_{11}B_{11} + \cdots + A_{14}B_{41} \\
C_{21} = A_{21}B_{11} + \cdots + A_{24}B_{41} \\
C_{31} = A_{31}B_{11} + \cdots + A_{34}B_{41} \\
C_{41} = A_{41}B_{11} + \cdots + A_{44}B_{41}
\]

- For each (j, k), $B_{k,j}$ is used to add $A_{:,k}B_{k,j}$ to $C_{:,j}$
Example: when \(j = 1, k = 1 \)

\[
C_{11} \leftarrow C_{11} + A_{11}B_{11}
\]

\[
\vdots
\]

\[
C_{41} \leftarrow C_{41} + A_{41}B_{11}
\]

Use Approach 2 for \(A_{:,1}B_{11} \)

\(A_{:,1} \): 256 columns, \(1024 \times 256 / 65536 = 4 \) pages.

\(A_{:,1}, \ldots, A_{:,4} \): \(4 \times 4 = 16 \) page faults in calculating \(C_{:,1} \)

For \(A \): \(16 \times 4 \) page faults

\(B \): 16 page faults, \(C \): 16 page faults
LAPACK – Linear Algebra PACKage, based on BLAS

Routines for solving
Systems of linear equations
Least-squares solutions of linear systems of equations
Eigenvalue problems, and
Singular value problems.

Subroutines in LAPACK classified as three levels:
• driver routines: each solves a complete problem, for example solving a system of linear equations
• computational routines: each performs a distinct computational task, for example an LU factorization
• auxiliary routines: subtasks of block algorithms, commonly required low-level computations, a few extensions to the BLAS

Provide both single and double versions

Naming: All driver and computational routines have names of the form XYYZZZ
X: data type, S: single, D: double, C: complex, Z: double complex

YY, indicate the type of matrix, for example

GB general band
GE general (i.e., unsymmetric, in some cases rectangular)

Band matrix: a band of nonzeros along diagonals

\[
\begin{bmatrix}
\times & \times \\
\times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times \\
\end{bmatrix}
\]
ZZZ indicate the computation performed, for example

SV simple driver of solving general linear systems
TRF factorize
TRS use the factorization to solve $Ax = b$ by forward or backward substitution
CON estimate the reciprocal of the condition number

SGESV: simple driver for single general linear systems
SGBSV: simple driver for single general band linear systems

- Now optimized BLAS and LAPACK available on nearly all platforms
From LAPACK manual Third edition; Table 3.7
http://www.netlib.org/lapack/lug
LU factorization DGETRF: $O(n^3)$
Speed in megaflops (10^6 floating point operations per second)
Block Algorithms in LAPACK II

<table>
<thead>
<tr>
<th>CPU Model</th>
<th>No. of CPUs</th>
<th>Block size</th>
<th>$n = 100$</th>
<th>$n = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec Alpha Miata</td>
<td>1</td>
<td>28</td>
<td>172</td>
<td>370</td>
</tr>
<tr>
<td>Compaq AlphaServer DS-20</td>
<td>1</td>
<td>28</td>
<td>353</td>
<td>440</td>
</tr>
<tr>
<td>IBM Power 3</td>
<td>1</td>
<td>32</td>
<td>278</td>
<td>551</td>
</tr>
<tr>
<td>IBM PowerPC</td>
<td>1</td>
<td>52</td>
<td>77</td>
<td>148</td>
</tr>
<tr>
<td>Intel Pentium II</td>
<td>1</td>
<td>40</td>
<td>132</td>
<td>250</td>
</tr>
<tr>
<td>Intel Pentium III</td>
<td>1</td>
<td>40</td>
<td>143</td>
<td>297</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>1</td>
<td>64</td>
<td>228</td>
<td>452</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>4</td>
<td>64</td>
<td>190</td>
<td>699</td>
</tr>
<tr>
<td>Sun Ultra 2</td>
<td>1</td>
<td>64</td>
<td>121</td>
<td>240</td>
</tr>
<tr>
<td>Sun Enterprise 450</td>
<td>1</td>
<td>64</td>
<td>163</td>
<td>334</td>
</tr>
</tbody>
</table>
100 to 1000: number of operations 1000 times
Block algorithms not very effective for small-sized problems
Clock speed of Intel Pentium III: 550 MHz
ATLAS: Automatically Tuned Linear Algebra Software I

- Web page: http://math-atlas.sourceforge.net/
- Programs specially compiled for your architecture
 That is, things related to your CPU, size of cache, RAM, etc.
We would like to compare the time for multiplying two 8,000 by 8,000 matrices

Directly using sources of blas
http://www.netlib.org/blas/

Pre-built optimized blas (Intel MKL for Linux)

ATLAS

BLAS by Kazushige Goto
Homework 4 II

https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2

See the NY Times article

This Goto Blas is not actively maintained now, so it’s unclear if the code can be easily used or not.

- You can use BLAS or CBLAS
- Try to comment on the use of multi-core processors.