Most numerical programs do similar operations
90% time is at 10% of the code
If these 10% of the code is optimized, programs will be fast
Frequently used subroutines should be available
For numerical computations, common operations can be easily identified
Example:
\begin{verbatim}
daxpy(n, alpha, p, inc, w, inc);
daxpy(n, malpha, q, inc, r, inc);

rtr = ddot(n, r, inc, r, inc);
rnorm = sqrt(rtr);
tnorm = sqrt(ddot(n, t, inc, t, inc));
\end{verbatim}

- ddot: inner product
- daxpy: \(ax + y \), \(x, y \) are vectors and \(a \) is a scalar
- If they are subroutines \(\Rightarrow \) several for loops
- The first BLAS paper:

ACM Trans. Math. Soft.: a major journal on numerical software

Become de facto standard for the elementary vector operations

(http://www.netlib.org/blas/)

Faster code than what you write
Netlib (http://www.netlib.org) is the largest site which contains freely available software, documents, and databases of interest to the numerical, scientific computing, and other communities (starting even before 1980). Interfaces from e-mail, ftp, gopher, x-based tool, to WWW

Level 1 BLAS includes:
dot product
constant times a vector plus a vector
rotation (don’t need to know what this is now)
copy vector x to vector y
swap vector x and vector y
length of a vector ($\sqrt{x_1^2 + \cdots + x_n^2}$)
sum of absolute values ($|x_1| + \cdots |x_n|$)
constant times a vector
index of element having maximum absolute value

- Programming convention
 \[dw = \text{ddot}(n, dx, \text{incx}, dy, \text{incy}) \]
BLAS: Basic Linear Algebra Subroutines

\[w = \sum_{i=1}^{n} dx_{1+(i-1)incx} dy_{1+(i-1)incy} \]

Example:
\[dw = \text{ddot}(n, dx, 2, dy, 2) \]
\[w = dx_1 dy_1 + dx_3 dy_3 + \cdots \]

- \text{sdot} is single precision, \text{ddot} is for double precision
- \[y = ax + y \]
 call \text{daxpy}(n, da, dx, incx, dy, incy)
BLAS: Basic Linear Algebra Subroutines VII

- To include which subroutines: difficult to make decisions
- C and Fortran interface
 - C calls Fortran:
 \[rtr = \text{ddot}_\text{(a)}(\&n, r, \&\text{inc}, r, \&\text{inc}); \]
 - C calls C:
 \[rtr = \text{ddot}(n, r, \text{inc}, r, \text{inc}); \]
- Traditionally they are written in Fortran
ddot_: calling Fortran subroutines (machine dependent)
&n: call by reference for Fortran subroutines

- Arrays: both call by reference
 - C: start with 0, Fortran: with 1
 - Should not cause problems here
- There is CBLAS interface
- For example, on a linux computer
$ ls /usr/lib | grep blas
libblas
libblas.a
libblas.so
libblas.so.3
libblas.so.3gf
libcblas.so.3
libcblas.so.3gf
libf77blas.so.3
libf77blas.so.3gf

.a: static library, .so: dynamic library, .3 versus .3gf: g77 versus gfortran
The original BLAS contains only $O(n)$ operations. That is, vector operations.
Matrix-vector product takes more time.
Level 2 BLAS involves $O(n^2)$ operations, n size of matrices.

Level 2 BLAS II

- Matrix-vector product

\[Ax : (Ax)_i = \sum_{j=1}^{n} A_{ij} x_j, \quad i = 1, \ldots, m \]

Like \(m \) inner products. However, inefficient if you use level 1 BLAS to implement this.

- Scope of level 2 BLAS:

- Matrix-vector product

\[y = \alpha Ax + \beta y, \quad y = \alpha A^T x + \beta y, \quad y = \alpha \bar{A}^T x + \beta y \]
Level 2 BLAS III

\(\alpha, \beta \) are scalars, \(x, y \) are vectors, \(A \) is a matrix

\(x = Tx, x = T^T x, x = \bar{T}^T x \)

\(x \) vector, \(T \) lower or upper triangular matrix

If \(A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \), the lower is \(\begin{bmatrix} 2 & 0 \\ 4 & 5 \end{bmatrix} \)

- Rank-one and rank-two updates

\(A = \alpha xy^T + A, H = \alpha x\bar{y}^T + \bar{\alpha} y\bar{x}^T + H \)

\(H \) is a Hermitian matrix \((H = \bar{H}^T, \text{symmetric for real numbers})\)

rank: \# of independent rows (columns) of a matrix

column rank = row rank
\[xy^T \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \begin{bmatrix} 4 & 8 \end{bmatrix} \] is a rank one matrix

\(n^2 \) operations

\[xy^T + yx^T \] is a rank-two matrix

\[
\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \begin{bmatrix} 4 & 8 \end{bmatrix} , \quad \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 6 & 8 \end{bmatrix}
\]

- Solution of triangular equations
\[x = T^{-1}y \]

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1n} \\
T_{21} & T_{22} & \cdots & T_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1} & T_{n2} & \cdots & T_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
\]

- The solution

\[
x_1 = \frac{y_1}{T_{11}}
\]
\[
x_2 = \frac{y_2 - T_{21}x_1}{T_{22}}
\]
\[
x_3 = \frac{y_3 - T_{31}x_1 - T_{32}x_2}{T_{33}}
\]
Number of multiplications/divisions:

\[1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \]
Level 3 BLAS I

- Things involve $O(n^3)$ operations
- Reference:
- Matrix-matrix products
 \[C = \alpha AB + \beta C, \quad C = \alpha A^T B + \beta C, \]
 \[C = \alpha AB^T + \beta C, \quad C = \alpha A^T B^T + \beta C \]
- Rank-k and rank-2k updates
Level 3 BLAS II

- Multiplying a matrix by a triangular matrix
 \[B = \alpha TB, \ldots \]

- Solving triangular systems of equations with multiple right-hand side:
 \[B = \alpha T^{-1}B, \ldots \]

- Naming conversions: follows the conventions of the level 2

- No subroutines for solving general linear systems or eigenvalues
 They are in the package LAPACK described later
Let’s test the matrix multiplication

A C program:
```c
#define n 2000
double a[n][n], b[n][n], c[n][n];

int main()
{
    int i, j, k;
    for (i=0;i<n;i++)
        for (j=0;j<n;j++)
            a[i][j]=1; b[i][j]=1;
```
for (i=0; i<n; i++)
 for (j=0; j<n; j++) {
 c[i][j] = 0;
 for (k=0; k<n; k++)
 c[i][j] += a[i][k] * b[k][j];
 }

A Matlab program
n = 2000;
A = randn(n,n); B = randn(n,n);
t = cputime; C = A*B; t = cputime -t

To remove the effect of multi-threading, use
matlab -singleCompThread

Timing is an issue
Elapsed time versus CPU time
cjlin@linux1:~$ matlab -singleCompThread
>> a = randn(3000,3000); tic; c = a*a; toc
Elapsed time is 4.520684 seconds.
>> a = randn(3000,3000); t = cputime; c = a*a; t = cputime - t

t =
4.3500
cjlin@linux1:~$ matlab
>> a = randn(3000,3000); tic; c = a*a; toc
Elapsed time is 1.180799 seconds.
>> a = randn(3000,3000); t=cputime; c = a*a; t=cputime-t

t =

8.4400

Matlab is much faster than a code written by ourselves. Why?

Optimized BLAS: the use of memory hierarchies
Data locality is exploited.

Use the highest level of memory as possible.

Block algorithms: transferring sub-matrices between different levels of storage localization operations to achieve good performance.
Memory Hierarchy I

CPU
↓
Registers
↓
Cache
↓
Main Memory
↓
Secondary storage (Disk)
• ↑: increasing in speed
• ↓: increasing in capacity
Page fault: operand not available in main memory transported from secondary memory (usually) overwrites page least recently used
I/O increases the total time
An example: $C = AB + C$, $n = 1,024$
Assumption: a page 65,536 doubles = 64 columns
16 pages for each matrix
48 pages for three matrices
Memory Management II

- Assumption: available memory 16 pages, matrices access: column oriented

\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

column oriented: 1 3 2 4
row oriented: 1 2 3 4

- access each row of \(A \): 16 page faults, \(1024/64 = 16 \)
- Assumption: each time a continuous segment of data into one page
- Approach 1: inner product
for i = 1:n
 for j = 1:n
 for k = 1:n
 c(i, j) = a(i, k) * b(k, j) + c(i, j);
 end
 end
end

We use a matlab-like syntax here

- At each (i,j): each row a(i, 1:n) causes 16 page faults
Total: $1024^2 \times 16$ page faults

- at least 16 million page faults

Approach 2:

```plaintext
for j = 1:n
    for k = 1:n
        for i = 1:n
            c(i,j) = a(i,k)*b(k,j)+c(i,j);
        end
    end
end
```
For each j, access all columns of A

A needs 16 pages, but B and C take spaces as well

So A must be read for every j

For each j, 16 page faults for A

1024×16 page faults

$C, B: 16$ page faults

Approach 3: block algorithms ($nb = 256$)
for \(j = 1:nb:n \)
 for \(k = 1:nb:n \)
 for \(jj = j:j+nb-1 \)
 for \(kk = k:k+nb-1 \)
 \(c(:,jj) = a(:,kk) \cdot b(kk,jj) + c(:,jj); \)
 end
 end
 end
end

In MATLAB, \(1:256:1025 \) means 1, 257, 513, 769
Note that we calculate

\[
\begin{pmatrix}
A_{11} & \cdots & A_{14} \\
\vdots & & \vdots \\
A_{41} & \cdots & A_{44}
\end{pmatrix}
\begin{pmatrix}
B_{11} & \cdots & B_{14} \\
\vdots & & \vdots \\
B_{41} & \cdots & B_{44}
\end{pmatrix}
= \begin{pmatrix}
A_{11}B_{11} + \cdots + A_{14}B_{41} & \cdots \\
\vdots & & \vdots \\
\end{pmatrix}
\]
Each block: 256×256

\[
C_{11} = A_{11} B_{11} + \cdots + A_{14} B_{41} \\
C_{21} = A_{21} B_{11} + \cdots + A_{24} B_{41} \\
C_{31} = A_{31} B_{11} + \cdots + A_{34} B_{41} \\
C_{41} = A_{41} B_{11} + \cdots + A_{44} B_{41}
\]

For each (j, k), $B_{k,j}$ is used to add $A_{:,k} B_{k,j}$ to $C_{:,j}$
Example: when $j = 1$, $k = 1$

\[C_{11} \leftarrow C_{11} + A_{11}B_{11} \]
\[\vdots \]
\[C_{41} \leftarrow C_{41} + A_{41}B_{11} \]

Use Approach 2 for $A_{:,1}B_{11}$

$A_{:,1}$: 256 columns, $1024 \times 256/65536 = 4$ pages.

$A_{:,1}, \ldots, A_{:,4}$: $4 \times 4 = 16$ page faults in calculating $C_{:,1}$

For A: 16×4 page faults

B: 16 page faults, C: 16 page faults
LAPACK – Linear Algebra PACKage, based on BLAS

- Routines for solving
 Systems of linear equations
 Least-squares solutions of linear systems of equations
 Eigenvalue problems, and
 Singular value problems.

- Subroutines in LAPACK classified as three levels:
LAPACK II

- **driver routines**: each solves a complete problem, for example solving a system of linear equations
- **computational routines**: each performs a distinct computational task, for example an LU factorization
- **auxiliary routines**: subtasks of block algorithms, commonly required low-level computations, a few extensions to the BLAS
- Provide both single and double versions
- **Naming**: All driver and computational routines have names of the form XYYZZZ
X: data type, S: single, D: double, C: complex, Z: double complex

YY, indicate the type of matrix, for example

GB general band

GE general (i.e., unsymmetric, in some cases rectangular)

Band matrix: a band of nonzeros along diagonals
ZZZ indicate the computation performed, for example

SV simple driver of solving general linear systems
TRF factorize
TRS use the factorization to solve $Ax = b$ by forward or backward substitution
CON estimate the reciprocal of the condition number

SGESV: simple driver for single general linear systems
SGBSV: simple driver for single general band linear systems

Now optimized BLAS and LAPACK available on nearly all platforms
From LAPACK manual Third edition; Table 3.7
http://www.netlib.org/lapack/lug
LU factorization DGETRF: \(O(n^3) \)
Speed in megaflops (10^6 floating point operations per second)
Block Algorithms in LAPACK II

<table>
<thead>
<tr>
<th></th>
<th>No. of CPUs</th>
<th>Block size</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec Alpha Miata</td>
<td>1</td>
<td>28</td>
<td>172</td>
<td>370</td>
</tr>
<tr>
<td>Compaq AlphaServer DS-20</td>
<td>1</td>
<td>28</td>
<td>353</td>
<td>440</td>
</tr>
<tr>
<td>IBM Power 3</td>
<td>1</td>
<td>32</td>
<td>278</td>
<td>551</td>
</tr>
<tr>
<td>IBM PowerPC</td>
<td>1</td>
<td>52</td>
<td>77</td>
<td>148</td>
</tr>
<tr>
<td>Intel Pentium II</td>
<td>1</td>
<td>40</td>
<td>132</td>
<td>250</td>
</tr>
<tr>
<td>Intel Pentium III</td>
<td>1</td>
<td>40</td>
<td>143</td>
<td>297</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>1</td>
<td>64</td>
<td>228</td>
<td>452</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>4</td>
<td>64</td>
<td>190</td>
<td>699</td>
</tr>
<tr>
<td>Sun Ultra 2</td>
<td>1</td>
<td>64</td>
<td>121</td>
<td>240</td>
</tr>
<tr>
<td>Sun Enterprise 450</td>
<td>1</td>
<td>64</td>
<td>163</td>
<td>334</td>
</tr>
</tbody>
</table>
100 to 1000: number of operations 1000 times
Block algorithms not very effective for small-sized problems
Clock speed of Intel Pentium III: 550 MHz
ATLAS: Automatically Tuned Linear Algebra Software I

- Web page: http://math-atlas.sourceforge.net/
- Programs specially compiled for your architecture
 That is, things related to your CPU, size of cache, RAM, etc.
We would like to compare the time for multiplying two 8,000 by 8,000 matrices

- Directly using sources of blas
 http://www.netlib.org/blas/
- pre-built optimized blas (Intel MKL for Linux)
- Use evaluation version
- ATLAS
- BLAS by Kazushige Goto
Homework 4 II

https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
See the NY Times article
This Goto Blas is not actively maintained now, so it’s unclear if the code can be easily used or not.

- You can use BLAS or CBLAS
- Try to comment on the use of multi-core processors.