Most numerical programs do similar operations
90% time is at 10% of the code
If these 10% of the code is optimized, programs will be fast
Frequently used subroutines should be available
For numerical computations, common operations can be easily identified
Example:
daxpy(n, alpha, p, inc, w, inc);
daxpy(n, malpha, q, inc, r, inc);

rtr = ddot(n, r, inc, r, inc);
rnorm = sqrt(rtr);
tnorm = sqrt(ddot(n, t, inc, t, inc));

- ddot: inner product
- daxpy: $ax + y$, x, b are vectors and a is a scalar
- If they are subroutines \Rightarrow several for loops
- The first BLAS paper:

ACM Trans. Math. Soft.: a major journal on numerical software

Become de facto standard for the elementary vector operations

(F http://www.netlib.org/blas/)

Faster code than what you write
Netlib (http://www.netlib.org) is the largest site which contains freely available software, documents, and databases of interest to the numerical, scientific computing, and other communities (starting even before 1980). Interfaces from e-mail, ftp, gopher, x-based tool, to WWW

Level 1 BLAS includes:
- dot product
- constant times a vector plus a vector
rotation (don’t need to know what this is now)
copy vector \(x \) to vector \(y \)
swap vector \(x \) and vector \(y \)
length of a vector \((\sqrt{x_1^2 + \cdots + x_n^2})\)
sum of absolute values \((|x_1| + \cdots |x_n|)\)
constant times a vector
index of element having maximum absolute value

Programming convention
\[
dw = \text{ddot}(n, dx, \text{incx}, dy, \text{incy})
\]
\[w = \sum_{i=1}^{n} dx_{1+(i-1)incx} dy_{1+(i-1)incy} \]

Example:
\[dw = \text{ddot}(n, dx, 2, dy, 2) \]
\[w = dx_1 dy_1 + dx_3 dy_3 + \cdots \]

- \text{sdot} is single precision, \text{ddot} is for double precision
- \(y = ax + y \)
 - call \text{daxpy}(n, da, dx, incx, dy, incy)
To include which subroutines: difficult to make decisions

C and Fortran interface

C calls Fortran:

\[
\text{rtr} = \text{ddot}_\text{-}(\&n, r, \&\text{inc}, r, \&\text{inc});
\]

C calls C:

\[
\text{rtr} = \text{ddot}(n, r, \text{inc}, r, \text{inc});
\]

Traditionally they are written in Fortran
ddot_: calling Fortran subroutines (machine dependent)
&n: call by reference for Fortran subroutines
- Arrays: both call by reference
 - C: start with 0, Fortran: with 1
 - Should not cause problems here
- There is CBLAS interface
- For example, on a Linux computer
$ ls /usr/lib| grep blas
libblas
libblas.a
libblas.so
libblas.so.3
libblas.so.3gf
libcblas.so.3
libcblas.so.3gf
libf77blas.so.3
libf77blas.so.3gf

.a: static library, .so: dynamic library, .3 versus .3gf: g77 versus gfortran
The original BLAS contains only $O(n)$ operations. That is, vector operations. Matrix-vector product takes more time.

Level 2 BLAS involves $O(n^2)$ operations, n size of matrices.

Matrix-vector product

\[\text{Ax} : (Ax)_i = \sum_{j=1}^{n} A_{ij} x_j, \quad i = 1, \ldots, m \]

Like \(m \) inner products. However, inefficient if you use level 1 BLAS to implement this

Scope of level 2 BLAS:

Matrix-vector product

\[y = \alpha Ax + \beta y, \quad y = \alpha A^T x + \beta y, \quad y = \alpha \bar{A}^T x + \beta y \]
Level 2 BLAS III

\(\alpha, \beta \) are scalars, \(x, y \) vectors, \(A \) matrix

\[x = Tx, x = T^T x, x = \overline{T}^T x \]

\(x \) vector, \(T \) lower or upper triangular matrix

If \(A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \), the lower is \(\begin{bmatrix} 2 & 0 \\ 4 & 5 \end{bmatrix} \)

- Rank-one and rank-two updates
 \[A = \alpha xy^T + A, \quad H = \alpha x\overline{y}^T + \overline{\alpha} y\overline{x}^T + H \]

\(H \) is a Hermitian matrix (\(H = \overline{H}^T \), symmetric for real numbers)

rank: \# of independent rows (columns) of a matrix

column rank = row rank
$xy^T \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \right)$ is a rank one matrix

n^2 operations

$xy^T + yx^T$ is a rank-two matrix

\[
\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 4 & 8 \end{bmatrix}
\]

- Solution of triangular equations
Level 2 BLAS V

\[x = T^{-1}y \]

\[
\begin{bmatrix}
T_{11} & T_{21} & \cdots & T_{n1} \\
T_{21} & T_{22} & \cdots & T_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1} & T_{n2} & \cdots & T_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
\]

- The solution

\[x_1 = y_1 / T_{11} \]
\[x_2 = (y_2 - T_{21}x_1) / T_{22} \]
\[x_3 = (y_3 - T_{31}x_1 - T_{32}x_2) / T_{33} \]
Number of multiplications/divisions:

\[1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \]
Level 3 BLAS I

- Things involve $O(n^3)$ operations
- Reference:
- Matrix-matrix products
 \[C = \alpha AB + \beta C, \quad C = \alpha A^T B + \beta C, \]
 \[C = \alpha AB^T + \beta C, \quad C = \alpha A^T B^T + \beta C \]
- Rank-k and rank-2k updates
Multiply a matrix by a triangular matrix
\[B = \alpha TB, \ldots \]

Solving triangular systems of equations with multiple right-hand side:
\[B = \alpha T^{-1}B, \ldots \]

Naming conversions: follows the conventions of the level 2

No subroutines for solving general linear systems or eigenvalues

In the package LAPACK described later
Let’s test the matrix multiplication

A C program:

```c
#define n 2000
double a[n][n], b[n][n], c[n][n];

int main()
{
    int i, j, k;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++) {
            a[i][j]=1; b[i][j]=1;
```
for (i=0; i<n; i++)
 for (j=0; j<n; j++) {
 c[i][j] = 0;
 for (k=0; k<n; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
}

A Matlab program
Block Algorithms III

n = 2000;
A = randn(n,n); B = randn(n,n);
t = cputime; C = A*B; t = cputime - t

- Matlab is much faster than a code written by ourselves. Why?
- Optimized BLAS: the use of memory hierarchies
- Data locality is exploited
- Use the highest level of memory as possible
- Block algorithms: transferring sub-matrices between different levels of storage localize operations to achieve good performance
- \(\uparrow \): increasing in speed
- \(\downarrow \): increasing in capacity
Memory Management I

- Page fault: operand not available in main memory transported from secondary memory (usually) overwrites page least recently used
- I/O increases the total time
- An example: $C = AB + C$, $n = 1,024$
- Assumption: a page 65,536 doubles = 64 columns
- 16 pages for each matrix
- 48 pages for three matrices
Memory Management II

- Assumption: available memory 16 pages, matrices access: column oriented

\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

column oriented: 1 3 2 4
row oriented: 1 2 3 4

- access each row of \(A \): 16 page faults, \(\frac{1024}{64} = 16 \)

- Assumption: each time a continuous segment of data into one page

- Approach 1: inner product
for i =1:n
 for j=1:n
 for k=1:n
 c(i,j) = a(i,k)*b(k,j)+c(i,j);
 end
 end
end

We use a matlab-like syntax here

- At each (i,j): each row a(i, 1:n) causes 16 page faults
Total: $1024^2 \times 16$ page faults

- at least 16 million page faults

- Approach 2:

  ```
  for j =1:n
    for k=1:n
      for i=1:n
        c(i,j) = a(i,k)*b(k,j)+c(i,j);
      end
    end
  end
  ```
For each j, access all columns of A

A needs 16 pages, but B and C take spaces as well

So A must be read for every j

For each j, 16 page faults for A

1024×16 page faults

C, B: 16 page faults

Approach 3: block algorithms (nb $= 256$)
for j =1:nb:n
 for k=1:nb:n
 for jj=j:j+nb-1
 for kk=k:k+nb-1
 c(:,jj) = a(:,kk)*b(kk,jj)+c(:,jj);
 end
 end
 end
end
Memory Management VII

\[
\begin{bmatrix}
A_{11} & \cdots & A_{14} \\
\vdots & & \vdots \\
A_{41} & \cdots & A_{44}
\end{bmatrix}
\begin{bmatrix}
B_{11} & \cdots & B_{14} \\
\vdots & & \vdots \\
B_{41} & \cdots & B_{44}
\end{bmatrix}
= \begin{bmatrix}
A_{11}B_{11} + \cdots + A_{14}B_{41} \\
\vdots & & \vdots
\end{bmatrix}
\]

- Each block: 256 \times 256

\[
\begin{align*}
C_{11} &= A_{11}B_{11} + \cdots + A_{14}B_{41} \\
C_{21} &= A_{21}B_{11} + \cdots + A_{24}B_{41} \\
C_{31} &= A_{31}B_{11} + \cdots + A_{34}B_{41} \\
C_{41} &= A_{41}B_{11} + \cdots + A_{44}B_{41}
\end{align*}
\]
Memory Management VIII

- Use Approach 2 for $A_{:,1}B_{11}$
- $A(:,1)$: 256 columns, $1024 \times 256/65536 = 4$ pages.
 $A_{:,1}, \ldots, A_{:,4}: 4 \times 4 = 16$ page faults in calculating $C_{:,1}$
- For A: 16×4 page faults
- B: 16 page faults, C: 16 page faults
LAPACK I

- LAPACK – Linear Algebra PACKage, based on BLAS
- Routines for solving Systems of linear equations
 Least-squares solutions of linear systems of equations
 Eigenvalue problems, and
 Singular value problems.
- Subroutines in LAPACK classified as three levels:
driver routines: each solves a complete problem, for example solving a system of linear equations

computational routines: each performs a distinct computational task, for example an LU factorization

auxiliary routines: subtasks of block algorithms, commonly required low-level computations, a few extensions to the BLAS

Provide both single and double versions

Naming: All driver and computational routines have names of the form XYYZZZ
LAPACK III

- X: data type, S: single, D: double, C: complex, Z: double complex
- YY, indicate the type of matrix, for example
 - GB: general band
 - GE: general (i.e., unsymmetric, in some cases rectangular)

Band matrix: a band of nonzeros along diagonals

\[
\begin{bmatrix}
 \times & \times \\
 \times & \times & \times \\
 \times & \times & \times & \times \\
 \times & \times & \times & \times & \times \\
\end{bmatrix}
\]
ZZZ indicate the computation performed, for example

SV simple driver of solving general linear systems
TRF factorize
TRS use the factorization to solve $Ax = b$ by forward or backward substitution
CON estimate the reciprocal of the condition number

SGESV: simple driver for single general linear systems
SGBSV: simple driver for single general band linear systems
Now optimized BLAS and LAPACK available on nearly all platforms
From LAPACK manual Third edition; Table 3.7
http://www.netlib.org/lapack/lug
LU factorization DGETRF: $O(n^3)$
Speed in megaflops (10^6 floating point operations per second)
<table>
<thead>
<tr>
<th>No. of CPUs</th>
<th>Block size</th>
<th>$n=100$</th>
<th>$n=1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec Alpha Miata</td>
<td>1</td>
<td>28</td>
<td>172</td>
</tr>
<tr>
<td>Compaq AlphaServer DS-20</td>
<td>1</td>
<td>28</td>
<td>353</td>
</tr>
<tr>
<td>IBM Power 3</td>
<td>1</td>
<td>32</td>
<td>278</td>
</tr>
<tr>
<td>IBM PowerPC</td>
<td>1</td>
<td>52</td>
<td>77</td>
</tr>
<tr>
<td>Intel Pentium II</td>
<td>1</td>
<td>40</td>
<td>132</td>
</tr>
<tr>
<td>Intel Pentium III</td>
<td>1</td>
<td>40</td>
<td>143</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>1</td>
<td>64</td>
<td>228</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>4</td>
<td>64</td>
<td>190</td>
</tr>
<tr>
<td>Sun Ultra 2</td>
<td>1</td>
<td>64</td>
<td>121</td>
</tr>
<tr>
<td>Sun Enterprise 450</td>
<td>1</td>
<td>64</td>
<td>163</td>
</tr>
</tbody>
</table>
100 to 1000: number of operations 1000 times

Block algorithms not very effective for small-sized problems

Clock speed of Intel Pentium III: 550 MHz
ATLAS: Automatically Tuned Linear Algebra Software I

- Web page: http://math-atlas.sourceforge.net/
- Programs specially compiled for your architecture
 That is, things related to your CPU, size of cache, RAM, etc.
Homework I

- We would like to compare the time for multiplying two 5,000 by 5,000 matrices.
- Directly using sources of blas.
 - http://www.netlib.org/blas/
- Pre-built optimized blas (Intel MKL for Linux).
 - Use evaluation version.
- ATLAS.
- BLAS by Kazushige Goto.
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
See the NY Times article
This Goto Blas is not actively maintained now, so it’s unclear if the code can be easily used or not.

- You can use BLAS or CBLAS
- Try to comment on the use of multi-core processors.