
Support Vector Machines for Data
Classification and Regression

Chih-Jen Lin

Department of Computer Science
National Taiwan University

Talk at Academia Sinica, April 30 and May 7, 2004
. – p.1/124

Outline

Support vector classification

Two practical example

Support vector regression

Discussion and conclusions

. – p.2/124

Data Classification

Given training data in different classes (labels known)
Predict test data (labels unknown)

Examples
Handwritten digits recognition
Spam filtering
Text classification
Prediction of signal peptide in human secretory
proteins

Training and testing

. – p.3/124

Methods:
Nearest Neighbor
Neural Networks
Decision Tree

Support vector machines: a new method

Becoming more and more popular

. – p.4/124

Why Support Vector Machines

Existing methods:
Nearest neighbor, Neural networks, decision trees.

SVM: a new one

In my opinion, after careful data pre-processing
Appropriately use NN or SVM⇒ similar accuracy

But, users may not use them properly

The chance of SVM

Easier for users to appropriately use it

The ambition: replacing NN on some applications

. – p.5/124

Support Vector Classification

Training vectors : xi, i = 1, . . . , l

Consider a simple case with two classes:
Define a vector y

yi =

{

1 if xi in class 1
−1 if xi in class 2,

A hyperplane which separates all data

. – p.6/124

w
T
x + b =

+1

0

−1

A separating hyperplane: w
T
x + b = 0

(wT
xi) + b > 0 if yi = 1

(wT
xi) + b < 0 if yi = −1

. – p.7/124

Decision function f(x) = sign(wT
x + b), x: test data

Variables: w and b : Need to know coefficients of a
plane
Many possible choices of w and b

Select w, b with the maximal margin.
Maximal distance between w

T
x + b = ±1

(wT
xi) + b ≥ 1 if yi = 1

(wT
xi) + b ≤ −1 if yi = −1

. – p.8/124

Distance between w
T
x + b = 1 and −1:

2/‖w‖ = 2/
√

wTw

max 2/‖w‖ ≡ minw
T
w/2

min
w,b

1

2
w

T
w

subject to yi((w
T
xi) + b) ≥ 1,

i = 1, . . . , l.

. – p.9/124

Higher Dimensional Feature Spaces

Earlier we tried to find a linear separating hyperplane
Data may not be linear separable

Non-separable case: allow training errors

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

yi((w
T
xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

ξi > 1, xi not on the correct side of the separating plane

C: large penalty parameter, most ξi are zero

. – p.10/124

Nonlinear case: linear separable in other spaces ?

Higher dimensional (maybe infinite) feature space

φ(x) = (φ1(x), φ2(x), . . .).

. – p.11/124

Example: x ∈ R3, φ(x) ∈ R10

φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1,

x2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

A standard problem [Cortes and Vapnik, 1995]:

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l.

. – p.12/124

Finding the Decision Function

w: a vector in a high dimensional space⇒ maybe
infinite variables

The dual problem

min
α

1

2
αTQα− e

T α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

y
T α = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

w =
∑l

i=1 αiyiφ(xi)

. – p.13/124

Primal and dual : optimization theory. Not trivial.
Infinite dimensional programming.

A finite problem:
#variables = #training data

Qij = yiyjφ(xi)
T φ(xj) needs a closed form

Efficient calculation of high dimensional inner products

Kernel trick, K(xi,xj) = φ(xi)
T φ(xj)

. – p.14/124

Example: xi ∈ R3, φ(xi) ∈ R10

φ(xi) = (1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3),

Then φ(xi)
Tφ(xj) = (1 + x

T
i xj)

2.

Popular methods: K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)

. – p.15/124

Kernel Tricks

Kernel: K(x,y) = φ(x)Tφ(y)

No need to explicitly know φ(x)

Common kernels K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)

They can be inner product in infinite dimensional space

Assume x ∈ R1 and γ > 0.

. – p.16/124

e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx2

i +2γxixj−γx2

j

= e−γx2

i−γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)
2

2!
+

(2γxixj)
3

3!
+ · · ·

)

= e−γx2

i−γx2

j
(

1 · 1 +

√

2γ

1!
xi ·

√

2γ

1!
xj +

√

(2γ)2

2!
x2

i ·
√

(2γ)2

2!
x2

j

+

√

(2γ)3

3!
x3

i ·
√

(2γ)3

3!
x3

j + · · ·
)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2

[1,

√

2γ

1!
x,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · ·]T .

. – p.17/124

Decision function

w: maybe an infinite vector

At optimum

w =
∑l

i=1 αiyiφ(xi)

Decision function

w
Tφ(x) + b

=
l

∑

i=1

αiyiφ(xi)
T φ(x) + b

=
l

∑

i=1

αiyiK(xi,x) + b

No need to have w

. – p.18/124

> 0: 1st class, < 0: 2nd class

Only φ(xi) of αi > 0 used

αi > 0⇒ support vectors

. – p.19/124

Support Vectors: More Important Data

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

. – p.20/124

Let Us Try An Example

A problem from astroparticle physics

1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02

1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02

1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02

1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02

1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02

1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02

1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02

Training and testing sets available: 3,089 and 4,000

Data format is an issue

. – p.21/124

SVM software: LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Now one of the most used SVM software

Installation

On Unix:
Download zip file and make

On Windows:

Download zip file and make
c:nmake -f Makefile.win

Windows binaries included in the package

. – p.22/124

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Usage of LIBSVM

Training

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR

-t kernel_type : set type of kernel function (default 2)

Testing

Usage: svm-predict test_file model_file output_file

. – p.23/124

Training and Testing

Training

$./svm-train train.1
......*
optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258
nSV = 3053, nBSV = 724
Total nSV = 3053

Testing

$./svm-predict test.1 train.1.model
test.1.predict

Accuracy = 66.925% (2677/4000)

. – p.24/124

What does this Output Mean

obj: the optimal objective value of the dual SVM

rho: −b in the decision function

nSV and nBSV: number of support vectors and
bounded support vectors

(i.e., αi = C).

nu-svm is a somewhat equivalent form of C-SVM where
C is replaced by ν.

. – p.25/124

Why this Fails

After training, nearly 100% support vectors

Training and testing accuracy different

$./svm-predict train.1 train.1.model o
Accuracy = 99.7734% (3082/3089)

Most kernel elements:

Kij

{

= 1 if i = j,

→ 0 if i 6= j.

. – p.26/124

Data Scaling

Without scaling
Attributes in greater numeric ranges may dominate

Example:

height sex
x1 150 F
x2 180 M
x3 185 M

and
y1 = 0, y2 = 1, y3 = 1.

. – p.27/124

The separating hyperplane

x1

x2x3

Decision strongly depends on the first attribute

What if the second is more important

. – p.28/124

Linearly scale the first to [0, 1] by:

1st attribute− 150

185− 150
,

New points and separating hyperplane

x1

x2x3

. – p.29/124

Transformed to the original space,

x1

x2x3

The second attribute plays a role

. – p.30/124

After Data Scaling

A common mistake

$./svm-scale -l -1 -u 1 train.1 > train.1.scale
$./svm-scale -l -1 -u 1 test.1 > test.1.scale

. – p.31/124

Same factor on training and testing

$./svm-scale -s range1 train.1 > train.1.scale
$./svm-scale -r range1 test.1 > test.1.scale
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict
→ Accuracy = 96.15%

We store the scaling factor used in training
and apply them for testing set

. – p.32/124

More on Training

Train scaled data and then prediction

$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict
→ Accuracy = 96.15%

Training accuracy now is

$./svm-predict train.1.scale train.1.scale.model o
Accuracy = 96.439% (2979/3089) (classification)

Default parameter

C = 1, γ = 0.25

. – p.33/124

Different Parameters

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 train.1.scale
./svm-predict train.1.scale train.1.scale.model o
Accuracy = 100% (3089/3089) (classification)

100% training accuracy but

$./svm-predict test.1.scale train.1.scale.model o
Accuracy = 82.7% (3308/4000) (classification)

Very bad test accuracy

Overfitting happens

. – p.34/124

Overfitting and Underfitting

When training and predicting a data,
we should

Avoid underfitting: small training error
Avoid overfitting: small testing error

. – p.35/124

● and ▲: training;© and4: testing

. – p.36/124

Overfitting

In theory

You can easily achieve 100% training accuracy

This is useless

Surprisingly

Many application papers did this

. – p.37/124

Parameter Selection

Is very important

Now parameters are

C, kernel parameters

Example:

γ of e−γ‖xi−xj‖
2

a, b, d of (xT
i xj/a + b)d

How to select them ?

So performance better ?

. – p.38/124

Performance Evaluation

Training errors not important; only test errors count

l training data, xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , l, a
learning machine:

x→ f(x, α), f(x, α) = 1 or − 1.

Different α: different machines

The expected test error (generalized error)

R(α) =

∫

1

2
|y − f(x, α)|dP (x, y)

y: class of x (i.e. 1 or -1)

. – p.39/124

P (x, y) unknown, empirical risk (training error):

Remp(α) =
1

2l

l
∑

i=1

|yi − f(xi, α)|

1
2 |yi − f(xi, α)| : loss, choose 0 ≤ η ≤ 1, with probability
at least 1− η:

R(α) ≤ Remp(α) + another term

A good pattern recognition method:
minimize both terms at the same time
Remp(α)→ 0
another term→ large

. – p.40/124

Performance Evaluation (Cont.)

In practice

Available data⇒ training and validation

Train the training

Test the validation

k-fold cross validation:

Data randomly separated to k groups.
Each time k − 1 as training and one as testing

. – p.41/124

CV and Test Accuracy

If we select parameters so that CV is the highest,

Does CV represent future test accuracy ?

Slightly different

If we have enough parameters, we can achieve 100%
CV as well

e.g. more parameters than # of training data
But test accuracy may be different

So

Available data with class labels
⇒ training, validation, testing

. – p.42/124

Using CV on training + validation

Predict testing with the best parameters from CV

. – p.43/124

A Simple Procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K(x, y) = e−γ‖x−y‖2

3. Use cross-validation to find the best parameter C and γ

4. Use the best C and γ to train the whole training set

5. Test

Best C and γ by training k − 1 and the whole ?

In theory, a minor difference

No problem in practice

. – p.44/124

Parameter Selection Procedure in LIBSVM

grid search + CV

$./grid.py train.1 train.1.scale

[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

grid.py: a python script in the python directory of LIBSVM

. – p.45/124

Easy parallelization on a cluster
$./grid.py train.1 train.1.scale

[linux1] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[linux7] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

. – p.46/124

Parallel Parameter Selection

Specify machine names in grid.py

telnet_workers = []
ssh_workers = [’linux1’,’linux1’,’linux2’,
’linux3’]
nr_local_worker = 1

linux1: more powerful or two CPUs

A simple centralized control

Load balancing not a problem

We can use other tools

Too simple so not consider them

. – p.47/124

Contour of Parameter Selection
d2 98.8

 98.6
 98.4
 98.2
 98
 97.8
 97.6
 97.4
 97.2
 97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)

. – p.48/124

Simple script in LIBSVM

easy.py: a script for dummies

$python easy.py train.1 test.1
Scaling training data...
Cross validation...
Best c=2.0, g=2.0
Training...
Scaling testing data...
Testing...
Accuracy = 96.875% (3875/4000)

. – p.49/124

Example: Engine Misfire
Detection

. – p.50/124

Problem Description

First problem of IJCNN Challenge 2001, data from Ford

Given time series length T = 50, 000

The kth data

x1(k), x2(k), x3(k), x4(k), x5(k), y(k)

y(k) = ±1: output, affected only by x1(k), . . . , x4(k)

x5(k) = 1, kth data considered for evaluating accuracy

50,000 training data, 100,000 testing data (in two sets)

. – p.51/124

Past and future information may affect y(k)

x1(k): periodically nine 0s, one 1, nine 0s, one 1, and so
on.

Example:

0.000000 -0.999991 0.169769 0.000000 1.000000
0.000000 -0.659538 0.169769 0.000292 1.000000
0.000000 -0.660738 0.169128 -0.020372 1.000000
1.000000 -0.660307 0.169128 0.007305 1.000000
0.000000 -0.660159 0.169525 0.002519 1.000000
0.000000 -0.659091 0.169525 0.018198 1.000000
0.000000 -0.660532 0.169525 -0.024526 1.000000
0.000000 -0.659798 0.169525 0.012458 1.000000

x4(k) more important

. – p.52/124

Background: Engine Misfire Detection

How engine works

Air-fuel mixture injected to cylinder

intact, compression, combustion, exhaustion

Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite

Frequent misfires: pollutants and costly replacement

On-board detection:

Engine crankshaft rational dynamics with a position
sensor

Training data: from some expensive experimental
environment

. – p.53/124

Encoding Schemes

For SVM: each data is a vector

x1(k): periodically nine 0s, one 1, nine 0s, one 1, ...

10 binary attributes
x1(k − 5), . . . , x1(k + 4) for the kth data
x1(k): an integer in 1 to 10
Which one is better
We think 10 binaries better for SVM

x4(k) more important

Including x4(k − 5), . . . , x4(k + 4) for the kth data

Each training data: 22 attributes

. – p.54/124

Training SVM

Selecting parameters; generating a good model for
prediction

RBF kernel K(xi,xj) = φ(xi)
T φ(xj) = e−γ‖xi−xj‖

2

Two parameters: γ and C

Five-fold cross validation on 50,000 data

Data randomly separated to five groups.

Each time four as training and one as testing

Use C = 24, γ = 22 and train 50,000 data for the final
model

. – p.55/124

d2 98.8
 98.6
 98.4
 98.2
 98
 97.8
 97.6
 97.4
 97.2
 97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)

. – p.56/124

Test set 1: 656 errors, Test set 2: 637 errors

About 3000 support vectors of 50,000 training data

A good case for SVM

This is just the outline. There are other details.

It is essential to do model selection.

. – p.57/124

SVM for Vehicle Classification

. – p.58/124

Machine Learning Is Sometimes An Art

But not a science

For complicated problems, there is no real systematic
procedure

Some tricks + domain knowledge can largely help

. – p.59/124

An Example: Vehicle Classification

Vehicle classification in distributed sensor networks

http://www.ece.wisc.edu/~sensit and
http://mmsp-2.caenn.wisc.edu/events.zip

Prepared by Duarte and Hu in University of
Wisconsin

Three classes of data:

two vehicles and noise

Each instance: acoustic and seismic features

features of each part: 50 and 50
data: 98528

. – p.60/124

http://www.ece.wisc.edu/~sensit
http://mmsp-2.caenn.wisc.edu/events.zip

Distribution of data:
#class 1 #class 2 #class 3

1 1 2

. – p.61/124

How Data Are Generated

Wireless distributed sensor networks (WDSN)

Several sensors in a field

Event extraction

Only information when the vehicle is close enough to
the sensor

Then a time series

FFT-based features

Noise: high-energy factors such as wind and radio
chatter.

. – p.62/124

Sample instances: Acoustic Data

2 1:-1.8893190e-02 2:-7.2501253e-03 3:-9.3349372e-03 4:8.2397278e-02 5:1.0000000e+00

6:2.8431799e-02 7:-3.9595759e-03 8:-2.2467102e-02 9:-2.7549071e-03 10:-2.2973921e-

02 11:-2.4513591e-02 12:-2.7172349e-02 13:-2.2274419e-02 14:-1.8458129e-02 15:-

2.6647322e-02 16:-2.6252666e-02 17:-2.2212002e-02 18:-2.5001779e-02 19:-2.6927617e-

02 20:-2.7374419e-02 21:-2.7112618e-02 22:-2.4502704e-02 23:-2.5475226e-02 24:-

2.5618921e-02 25:-2.6852989e-02 26:-2.5735666e-02 27:-2.7456095e-02 28:-2.7803905e-

02 29:-2.6621734e-02 30:-2.4935499e-02 31:-2.7729578e-02 32:-2.6718499e-02 33:-

1.9738297e-02 34:-2.2609663e-02 35:-2.3814977e-02 36:-2.6252692e-02 37:-2.4909885e-

02 38:-2.5807719e-02 39:-2.4148006e-02 40:-2.5490619e-02 41:-2.7913212e-02 42:-

2.7597027e-02 43:-2.5268295e-02 44:-2.7936994e-02 45:-2.7851349e-02 46:-2.7829329e-

02 47:-2.7685600e-02 48:-2.5771240e-02 49:-2.5038023e-02 50:-2.4134665e-02
. – p.63/124

Results from the Authors

Paper available from
http://www.ece.wisc.edu/~sensit/publications/

Three-fold CV Accuracy
Method Acoustic Seismic
k-nearest neighbor 69.36% 56.24%
Maximal likelihood 68.95% 62.81%
SVM 69.48% 63.79%

We think more investigation may improve the accuracy

So I decided to let students do a project on this

. – p.64/124

http://www.ece.wisc.edu/~sensit/publications/

A report presented in my statistical learning theory
course

By C.-C. Chou, S.-T. Wang, R.-E. Fan, C.-W. Lin, and
C.-C. Lin

Accuracy improved to 87%

. – p.65/124

Authors’ Approach

Data split to three folds

Two as training and one as validation

Average of three validation accuracy reported

Polynomial kernel used

(1 + x
T
i xj)

T

C = 1

No parameter selection

. – p.66/124

My Students’ Approach

Cross-validation is a biased estimate

Too many parameters: CV accuracy overfitted

Practically ok for two/three parameters

We do a more formal way

98528⇒ 4/5 training and validation, 1/5 testing

. – p.67/124

Kernel/Parameter Selection

RBF kernel
e−γ‖xi−xj‖

2

Parameter selection very important

C and γ

Fewer than polynomial kernel

Huge training time

10% of the 4/5 training data for cross-validation

. – p.68/124

Issue: best (C, γ) for 10% may not be the best for the
whole

In theory C should be decreased a bit

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

Need further investigation

. – p.69/124

Results

Test accuracy (log2 C, log2 γ)
Acoustic Seismic

75.01 (7,-2) 72.03 (18,-10)

Not very good

Try to combine two features

New accuracy 83.70 (9,-6)

This case:

Combining features seems to provide more information

. – p.70/124

Data Scaling

Earlier we mention the importance of data scaling

How about this data set ?

Each attribute in a suitable range ?

First 4 attributes of training/validation:

X1 X2 X3 X4

Min.:-0.5988 Min.:-0.5194 Min.:-0.4806 Min.:-0.5111

Mean: 0.1319 Mean: 0.2481 Mean: 0.1512 Mean: 0.1844

Max.: 1.0000 Max.: 1.0000 Max.: 1.0000 Max.: 1.0000

Other features similar

. – p.71/124

Data Scaling (Cont.)

From the authors’ original matlab code: x ∈ Rn:

xi ←
xi

maxj(|xj |)

Instance-wise scaling

Earlier: feature-wise scaling

First 4 features scaled to [−1, 1]

X1 X2 X3 X4

Min.:-1.0000 Min.:-1.0000 Min.:-0.9999 Min.:-1.0000

Mean:-0.8570 Mean:-0.7580 Mean:-0.8389 Mean:-0.8351

Max.: 0.9703 Max.: 1.0000 Max.: 0.8968 Max.: 1.0000

. – p.72/124

Other features similar

max of X1 < 1 as

we scale all and the above: only 4/5

Very different distributions

How attributes scaled to [−1, 1]:

xi −min

max−min
× 2− 1

. – p.73/124

In original data, most xi close to min

After instance-wise scaling, may not be that close to the
new min

Instance-wise scaling may not be that appropriate

. – p.74/124

After Scaling

New results
Acoustic Seismic Combined

79.71 (6,-2) 76.68 (6,-2) 87.18 (5,-3)

Compare to earlier results
Acoustic Seismic Combined

75.01 (7,-2) 72.03 (18,-10) 83.70 (9,-6)

New results consistently better

Feature-wise scaling seems more appropriate

Six data sets available at

www.csie.ntu.edu.tw/~cjlin/libsvmtools/t/vehicle

. – p.75/124

www.csie.ntu.edu.tw/~cjlin/libsvmtools/t/vehicle

Issues not Investigated Yet

If most values close to min of the features

are these values outliers or useful information ?

Is 86% enough for practical use ?

Originally
Assault Amphibian Vehicle (AAV)
Main Battle Tank (M1)
High Mobility Multipurpose Wheeled Vehicle
(HMMWV)
Dragon Wagon (DW)

. – p.76/124

So five-class problem

Now we have only AAV, DW, and noise

of SVs is an issue

Now around 20,000 SVs
Can they be stored in a sensor ?

Further improvement
Feature selection
How about other methods

. – p.77/124

Lesson from This Experiment

No systematic way for a machine learning task

However, some simple techniques/analysis help

Better understanding on ML methods also helps

Of course you need good luck

. – p.78/124

SVM Optimization Problems

. – p.79/124

SVM Primal and Dual

Standard SVM

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

w: huge vector variable

Possibly infinite variables

Practically we solve a different but strongly related
problem

. – p.80/124

Dual problem

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,

l
∑

i=1

yiαi = 0.

K(xi,xj) = φ(xi)
Tφ(xj) available

using special φ

α: l variables; finite

Original SVM: called primal
. – p.81/124

Primal Dual Relationship

At optimum

w̄ =

l
∑

i=1

ᾱiyiφ(xi) (1)

1

2
w̄

T
w̄ + C

l
∑

i=1

ξ̄i = e
T ᾱ− 1

2
ᾱTQᾱ. (2)

where e = [1, . . . , 1]T .

Primal objective value = - Dual objective value

LIBSVM solves dual⇒ negative objective value

How does this dual come from ?

. – p.82/124

Derivation of the Dual

We follow the description in [Bazaraa et al., 1993]

Consider a simpler problem

min
w,b

1

2
w

T
w

subject to yi(w
Tφ(xi) + b) ≥ 1, i = 1, . . . , l.

Its dual

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to 0 ≤ αi, i = 1, . . . , l,

l
∑

i=1

yiαi = 0.
. – p.83/124

Lagrangian Dual

Defined as
max
α≥0

(min
w,b

L(w, b,α)), (3)

where

L(w, b,α) =
1

2
‖w‖2 −

l
∑

i=1

αi

(

yi(w
Tφ(xi) + b)− 1

)

. (4)

Minimize with respect to the primal variables w and b

Maximize with respect to the dual variables αi.

There are different dual problems

Lagrangian dual is one

. – p.84/124

Assume (w̄, b̄) optimal for the primal with optimal
objective value γ = 1

2‖w̄‖2.

No (w, b) satisfies

1

2
‖w‖2 < γ and yi(w

Tφ(xi) + b) ≥ 1, i = 1, . . . , l. (5)

There is ᾱ ≥ 0 such that for all w, b

1

2
‖w‖2 − γ −

l
∑

i=1

ᾱi

(

yi(w
Tφ(xi) + b)− 1

)

≥ 0. (6)

Quite intuitive, detailed proof omitted

. – p.85/124

Thus
max
α≥0

min
w,b

L(w, b,α) ≥ γ. (7)

i.e., for any α,

min
w,b

L(w, b,α) ≤ L(w̄, b̄,α),

so

max
α≥0

min
w,b

L(w, b,α) ≤ max
α≥0

L(w̄, b̄,α) =
1

2
‖w̄‖2 = γ. (8)

“=” holds

Strong duality: primal and dual the same optimal
objective value.

. – p.86/124

With ᾱi ≥ 0 and yi(w̄
Tφ(xi) + b̄)− 1 ≥ 0,

ᾱi[yi(w̄
Tφ(xi) + b̄)− 1] = 0, i = 1, . . . , l,

Complementarity condition.

Simplify the dual, when α is fixed,

min
w,b

L(w, b,α)

=

{

−∞ if
∑l

i=1 αiyi 6= 0,

minw

1
2w

T
w −

∑l
i=1 αi[yi(w

T φ(xi)− 1] if
∑l

i=1 αiyi = 0.

(9)

. – p.87/124

If
∑l

i=1 αiyi 6= 0,

decrease −b
∑l

i=1 αiyi in L(w, b,α) to −∞

If
∑l

i=1 αiyi = 0,

Optimum of 1
2w

T
w −

∑l
i=1 αi[yi(w

Tφ(xi)− 1]

happens when

∂

∂w
L(w, b,α) = 0.

Thus,

w =
l

∑

i=1

αiyiφ(xi). (10)

. – p.88/124

More details

∂

∂w
L(w, b,α) =

∂
∂w1

L(w, b,α)
...

∂
∂wn

L(w, b,α)

Assume w ∈ Rn

L(w, b,α) rewritten as

1

2

n
∑

j=1

w2
j −

l
∑

i=1

αi[yi(
n

∑

j=1

wjφ(xi)j − 1]

. – p.89/124

So

∂

∂wj
L(w, b,α) = wj −

l
∑

i=1

αiyiφ(xi)j = 0

Note that

w
T
w =

(l
∑

i=1

αiyiφ(xi)

)T (l
∑

j=1

αjyjφ(xj)

)

=
∑

i,j

αiαjyiyjφ(xi)
Tφ(xj)

. – p.90/124

The dual is

max
α≥0

{

∑l
i=1 αi − 1

2

∑

i,j αiαjyiyjφ(xi)
Tφ(xj) if

∑l
i=1 αiyi = 0,

−∞ if
∑l

i=1 αiyi 6= 0.

−∞ definitely not maximum of the dual

Dual optimal solution not happen when
∑l

i=1 αiyi 6= 0.

Dual simplified to

max
α∈Rl

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
Tφ(xj)

subject to αi ≥ 0, i = 1, . . . , l, and
l

∑

i=1

αiyi = 0.

. – p.91/124

Karush-Kuhn-Tucker (KKT) optimality conditions of the
primal:

ᾱi[yi(w̄
Tφ(xi) + b̄)− 1] = 0, i = 1, . . . , l,

l
∑

i=1

αiyi = 0, αi ≥ 0,∀i,

w =
l

∑

i=1

αiyiφ(xi).

(w, b) optimal⇔ if feasible and there is α which
satisfies KKT

The derivation with additional variables ξi

Similar
. – p.92/124

An Example

Two training data in R1:

4
0

©
1

What is the separating hyperplane ?

. – p.93/124

Primal Problem

x1 = 0,x2 = 1 with y = [−1, 1]T .

Primal problem

min
w,b

1

2
w2

subject to w · 1 + b ≥ 1, (11)

−1(w · 0 + b) ≥ 1. (12)

. – p.94/124

−b ≥ 1 and w ≥ 1− b ≥ 2.

For any (w, b) satisfying two inequality constraints

w ≥ 2

We are minimizing 1
2w2

The smallest possibility is w = 2.

(w, b) = (2,−1) is the optimal solution.

The separating hyperplane 2x− 1 = 0
In the middle of the two training data:

4
0

©
1

•
x = 1/2

. – p.95/124

Dual Problem

Formula derived before

min
α∈Rl

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , l, and
l

∑

i=1

αiyi = 0.

Get the objective function

x
T
1 x1 = 0,xT

1 x2 = 0

x
T
2 x1 = 0,xT

2 x2 = 1

. – p.96/124

Objective function

1

2
α2

1 − (α1 + α2)

=
1

2

[

α1 α2

]

[

0 0

0 1

][

α1

α2

]

−
[

1 1
]

[

α1

α2

]

.

Constraints

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.

. – p.97/124

α2 = α1 to the objective function,

1

2
α2

1 − 2α2

Smallest value at α1 = 2.

α2 as well

If smallest value < 0

clipped to 0

. – p.98/124

Dual Problems for Other Formulas

So we think that for any optimization problem

Lagrangian dual exists

This is wrong

Remember we calculate

min
1

2
w

T
w −

l
∑

i=1

αi[yi(w
T φ(xi)− 1]

by
∂

∂w
L(w, b,α) = 0.

. – p.99/124

Note that
f ′(x) = 0⇔ x minimum

is wrong

Example
f(x) = x3, x = 0 not minimum

This function must satisfy certain conditions

Some papers wrongly derived the dual of their

new formulations without checking conditions

. – p.100/124

[2, 2]T satisfies constraints 0 ≤ α1 and 0 ≤ α2

It is optimal

Primal-dual relation

w = y1α1x1 + y2α2x2

= 1 · 2 · 1 + (−1) · 2 · 0
= 2

The same as solving the primal

. – p.101/124

Multi-class Classification

k classes

One-against-all: Train k binary SVMs:

1st class vs. (2− k)th class
2nd class vs. (1, 3− k)th class

...

k decision functions

(w1)Tφ(x) + b1

...

(wk)Tφ(x) + bk

. – p.102/124

Select the index with the largest (wj)T φ(x) + bj

. – p.103/124

Multi-class Classification (Cont.)

One-against-one: train k(k − 1)/2 binary SVMs

(1, 2), (1, 3), . . . , (1, k), (2, 3), (2, 4), . . . , (k − 1, k)

Select the one with the largest vote

This is the method used by LIBSVM

Try a 4-class problem

6 binary SVMs

. – p.104/124

$libsvm-2.5/svm-train bsvm-2.05/vehicle.scale
optimization finished, #iter = 173
obj = -142.552559, rho = 0.748453
nSV = 194, nBSV = 183
optimization finished, #iter = 330
obj = -149.912202, rho = -0.786410
nSV = 227, nBSV = 217
optimization finished, #iter = 169
obj = -139.655613, rho = 0.998277
nSV = 186, nBSV = 177
optimization finished, #iter = 268
obj = -185.161735, rho = -0.674739
nSV = 253, nBSV = 244
optimization finished, #iter = 477
obj = -378.264371, rho = 0.177314
nSV = 405, nBSV = 394
optimization finished, #iter = 337
obj = -186.182860, rho = 1.104943
nSV = 261, nBSV = 247
Total nSV = 739 . – p.105/124

There are many other methods

A comparison in [Hsu and Lin, 2002]

For a software

We select one which is generally good but not always
the best

Finally I chose 1 vs. 1

Similar accuracy to others

Shortest training

A bit longer on testing than 1 vs. all

. – p.106/124

Why Shorter Training Time

1 vs. 1

k(k − 1)/2 problems, each 2l/k data on average

1 vs. all

k problems, each l data

If solving the optimization problem:

polynomial of the size with degree d

Their complexities

k(k − 1)

2
O

((

2l

k

)d)

vs. kO(ld)

. – p.107/124

SVM Regression

. – p.108/124

Outline

Support vector regression (SVR)

Practical examples

Discussion

. – p.109/124

Support Vector Regression (SVR)

Support vector machines: a new method for data
classification and prediction

Given training data (x1, y1), . . . , (xl, yl)

Regression: find a function so that

f(xi) ≈ yi

Least square regression:

min
w,b

l
∑

i=1

(yi − (wT
xi + b))2

. – p.110/124

x

y

w
T
x + b

This is equivalent to

min
w,b,ξ,ξ∗

l
∑

i=1

ξ2
i + (ξ∗i)2

subject to −ξ∗i ≤ yi − (wT
xi + b) ≤ ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.
. – p.111/124

A quadratic programming problem

L1-norm regression

min
w,b

l
∑

i=1

|yi − (wT
xi + b)|

or

min
w,b,ξ,ξ∗

l
∑

i=1

(ξi + ξ∗i)

subject to −ξ∗i ≤ yi − (wT
xi + b) ≤ ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.

. – p.112/124

A linear programming problem

This is equivalent to

min
w,b,ξ,ξ∗

C
l

∑

i=1

(ξi + ξ∗i)

subject to −ξ∗i ≤ yi − (wT
xi + b) ≤ ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.

C: a constant

. – p.113/124

Linear support vector regression

min
w,b,ξ,ξ∗

1

2
w

T
w + C

l
∑

i=1

(ξi + ξ∗i)

subject to −ξ∗i − ε ≤ yi − (wT
xi + b) ≤ ε + ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.

ε-insensitive loss function

. – p.114/124

A tube
−ε ≤ y − (wT

x + b) ≤ ε

Data in the tube considered no error

Most training data in the tube
1
2w

T
w: regularization, w

T
x + b more smooth

Similar to the classification case

General support vector regression:

Data mapped to a higher space by φ(x)

The new approximation function

w
T φ(x) + b

. – p.115/124

ξi

ξ∗i

w
T φ(x) + b =

[

ε
0
−ε

]

Regression in a higher dimensional space

. – p.116/124

Standard SVR

min
w,b,ξ,ξ∗

1

2
w

T
w + C

l
∑

i=1

ξi + C
l

∑

i=1

ξ∗i

−ε− ξ∗i ≤ yi − (wT φ(xi) + b) ≤ ε + ξi,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.

Data in high dimensional spaces

Possible w
T φ(xi) + b = yi, i = 1, . . . , l

⇒ overfitting

This is like in theory 100% training accuracy in
classification

. – p.117/124

Good regression methods: balance between overfitting
and underfitting

min 1
2w

T
w: avoid overfitting

min
∑l

i=1(ξi + ξ∗i): avoid underfitting

. – p.118/124

Support vector regression using LIBSVM

Using the option -s 3

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR

. – p.119/124

Check a regression data

$head -n 5 svrprob/trans/abalone.scale.shuffle.train.1
13 1:-1 2:0.310811 3:0.193277 4:-0.707965 5:-0.273012 6:-0.441693 7:-0.175958 8:-0.324278
12 1:-1 2:0.797297 3:0.764706 4:-0.637168 5:0.86369 6:0.301118 7:0.634146 8:0.101302
9 1:-1 2:-0.121622 3:-0.159664 4:-0.769912 5:-0.771641 6:-0.848243 7:-0.766551 8:-0.765705
8 1:-1 2:0.189189 3:0.142857 4:-0.761062 5:-0.212691 6:-0.247604 7:-0.132404 8:-0.432937
19 1:1 2:0.202703 3:0.12605 4:-0.752212 5:-0.427732 6:-0.615815 7:-0.5 8:-0.414827

Additional parameter ε

$svm-train -s 3 -c 64 -g 0.25 -p 0.5 svrprob/trans/abalone.scale.shuffle.train.1
.....................................*...*
optimization finished, #iter = 40152
nu = 0.710465
obj = -54155.806305, rho = -11.610859
nSV = 592, nBSV = 547 . – p.120/124

Test

$svm-predict svrprob/trans/abalone.scale.shuffle.test.1 abalone.scale.shuffle.train.1.model o
Accuracy = 0% (0/200) (classification)
Mean squared error = 5.00931 (regression)
Squared correlation coefficient = 0.58387 (regression)

Test data

$head -n 5 svrprob/trans/abalone.scale.shuffle.test.1
8 1:1 2:0.0945946 3:0.0420168 4:-0.823009 5:-0.640423 6:-0.649361 7:-0.710801 8:-0.697793
20 2:0.756757 3:0.747899 4:-0.690265 5:0.662358 6:0.220447 7:0.571429 8:0.92077
7 1:1 2:0.175676 3:0.142857 4:-0.769912 5:-0.529573 6:-0.552716 7:-0.503484 8:-0.636672
8 1:-1 2:0.189189 3:0.12605 4:-0.752212 5:-0.470427 6:-0.456869 7:-0.54007 8:-0.734012
13 1:-1 2:0.608108 3:0.529412 4:-0.681416 5:0.314532 6:0.477636 7:0.0348432 8:-0.11262

. – p.121/124

Check

$head -n 5 o
7.62474
14.7385
8.40741
7.13157
9.74578

. – p.122/124

SVR Performance Evaluation

Not accuracy any more

MSE (Mean Square Error):

l
∑

i=1

(yi − ŷi)
2

Squared correlation coefficient (also called r2)

∑l
i=1(yi − ȳ)2(ŷi − ¯̂y)2

∑l
i=1(yi − ȳ)2

∑l
i=1(ŷi − ¯̂y)2

ȳ: mean of yi, i = 1, . . . , l

0 ≤ r2 ≤ 1: close to 1⇒ better

. – p.123/124

Conclusions

Dealing with data is interesting

especially if you get good accuracy

Some basic understandings are essential when
applying methods

e.g. the importance of validation

No method is the best for all data

Deep understanding of one or two methods very helpful

. – p.124/124

	
	Outline
	Data Classification
	
	Why Support Vector Machines
	Support Vector Classification
	
	
	
	Higher Dimensional Feature Spaces
	
	
	Finding the Decision Function
	
	
	Kernel Tricks
	
	Decision function
	
	Support Vectors: More Important Data
	Let Us Try An Example
	SVM software: libsvm
	Usage of libsvm
	Training and Testing
	What does this Output Mean
	Why this Fails
	Data Scaling
	
	
	
	After Data Scaling
	
	More on Training
	Different Parameters
	Overfitting and Underfitting
	 ding {108} and ding {115}: training; $�igcirc $ and $�igtriangleup $: testing
	Overfitting
	Parameter Selection
	Performance Evaluation
	
	Performance Evaluation (Cont.)
	CV and Test Accuracy
	
	A Simple Procedure
	Parameter Selection Procedure in libsvm
	
	Parallel Parameter Selection
	Contour of Parameter Selection
	Simple script in libsvm
	
	Problem Description
	
	Background: Engine Misfire Detection
	Encoding Schemes
	Training SVM
	
	
	
	Machine Learning Is Sometimes An Art
	An Example: Vehicle Classification
	
	How Data Are Generated
	Sample instances: Acoustic Data
	Results from the Authors
	
	Authors' Approach
	My Students' Approach
	Kernel/Parameter Selection
	
	Results
	Data Scaling
	Data Scaling (Cont.)
	
	
	After Scaling
	Issues not Investigated Yet
	
	Lesson from This Experiment
	
	SVM Primal and Dual
	
	Primal Dual Relationship
	Derivation of the Dual
	Lagrangian Dual
	
	
	
	
	
	
	
	
	An Example
	Primal Problem
	
	Dual Problem
	
	
	Dual Problems for Other Formulas
	
	
	Multi-class Classification
	
	Multi-class Classification (Cont.)
	
	
	Why Shorter Training Time
	
	Outline
	Support Vector Regression (SVR)
	
	
	
	
	
	
	
	
	Support vector regression using libsvm
	
	
	
	SVR Performance Evaluation
	Conclusions

