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Data Classification

Given training data in different classes (labels known)
Predict test data (labels unknown)

Examples
Handwritten digits recognition
Spam filtering
Text classification
Prediction of signal peptide in human secretory
proteins

Training and testing
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Methods:
Nearest Neighbor
Neural Networks
Decision Tree

Support vector machines: a new method

Becoming more and more popular
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Why Support Vector Machines

Existing methods:
Nearest neighbor, Neural networks, decision trees.

SVM: a new one

In my opinion, after careful data pre-processing
Appropriately use NN or SVM⇒ similar accuracy

But, users may not use them properly

The chance of SVM

Easier for users to appropriately use it

The ambition: replacing NN on some applications
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Support Vector Classification

Training vectors : xi, i = 1, . . . , l

Consider a simple case with two classes:
Define a vector y

yi =

{

1 if xi in class 1
−1 if xi in class 2,

A hyperplane which separates all data
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A separating hyperplane: w
T
x + b = 0

(wT
xi) + b > 0 if yi = 1

(wT
xi) + b < 0 if yi = −1
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Decision function f(x) = sign(wT
x + b), x: test data

Variables: w and b : Need to know coefficients of a
plane
Many possible choices of w and b

Select w, b with the maximal margin.
Maximal distance between w

T
x + b = ±1

(wT
xi) + b ≥ 1 if yi = 1

(wT
xi) + b ≤ −1 if yi = −1
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Distance between w
T
x + b = 1 and −1:

2/‖w‖ = 2/
√

wTw

max 2/‖w‖ ≡ minw
T
w/2

min
w,b

1

2
w

T
w

subject to yi((w
T
xi) + b) ≥ 1,

i = 1, . . . , l.
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Higher Dimensional Feature Spaces

Earlier we tried to find a linear separating hyperplane
Data may not be linear separable

Non-separable case: allow training errors

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

yi((w
T
xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

ξi > 1, xi not on the correct side of the separating plane

C: large penalty parameter, most ξi are zero
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Nonlinear case: linear separable in other spaces ?

Higher dimensional ( maybe infinite ) feature space

φ(x) = (φ1(x), φ2(x), . . .).
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Example: x ∈ R3, φ(x) ∈ R10

φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1,

x2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

A standard problem [Cortes and Vapnik, 1995]:

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l.
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Finding the Decision Function

w: a vector in a high dimensional space⇒ maybe
infinite variables

The dual problem

min
α

1

2
αTQα− e

T α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

y
T α = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

w =
∑l

i=1 αiyiφ(xi)
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Primal and dual : optimization theory. Not trivial.
Infinite dimensional programming.

A finite problem:
#variables = #training data

Qij = yiyjφ(xi)
T φ(xj) needs a closed form

Efficient calculation of high dimensional inner products

Kernel trick, K(xi,xj) = φ(xi)
T φ(xj)
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Example: xi ∈ R3, φ(xi) ∈ R10

φ(xi) = (1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3),

Then φ(xi)
Tφ(xj) = (1 + x

T
i xj)

2.

Popular methods: K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)
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Kernel Tricks

Kernel: K(x,y) = φ(x)Tφ(y)

No need to explicitly know φ(x)

Common kernels K(xi,xj) =

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)

They can be inner product in infinite dimensional space

Assume x ∈ R1 and γ > 0.
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e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx2

i +2γxixj−γx2

j

= e−γx2

i−γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)
2

2!
+

(2γxixj)
3

3!
+ · · ·

)

= e−γx2

i−γx2

j
(

1 · 1 +

√

2γ

1!
xi ·

√

2γ

1!
xj +

√

(2γ)2

2!
x2

i ·
√

(2γ)2

2!
x2

j

+

√

(2γ)3

3!
x3

i ·
√

(2γ)3

3!
x3

j + · · ·
)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2

[1,

√

2γ

1!
x,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · · ]T .
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Decision function

w: maybe an infinite vector

At optimum

w =
∑l

i=1 αiyiφ(xi)

Decision function

w
Tφ(x) + b

=
l

∑

i=1

αiyiφ(xi)
T φ(x) + b

=
l

∑

i=1

αiyiK(xi,x) + b

No need to have w
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> 0: 1st class, < 0: 2nd class

Only φ(xi) of αi > 0 used

αi > 0⇒ support vectors
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Support Vectors: More Important Data
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Let Us Try An Example

A problem from astroparticle physics

1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02

1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02

1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02

1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02

1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02

1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02

1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02

Training and testing sets available: 3,089 and 4,000

Data format is an issue
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SVM software: LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Now one of the most used SVM software

Installation

On Unix:
Download zip file and make

On Windows:

Download zip file and make
c:nmake -f Makefile.win

Windows binaries included in the package
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Usage of LIBSVM

Training

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR

-t kernel_type : set type of kernel function (default 2)

Testing

Usage: svm-predict test_file model_file output_file
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Training and Testing

Training

$./svm-train train.1
......*
optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258
nSV = 3053, nBSV = 724
Total nSV = 3053

Testing

$./svm-predict test.1 train.1.model
test.1.predict

Accuracy = 66.925% (2677/4000)
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What does this Output Mean

obj: the optimal objective value of the dual SVM

rho: −b in the decision function

nSV and nBSV: number of support vectors and
bounded support vectors

(i.e., αi = C).

nu-svm is a somewhat equivalent form of C-SVM where
C is replaced by ν.
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Why this Fails

After training, nearly 100% support vectors

Training and testing accuracy different

$./svm-predict train.1 train.1.model o
Accuracy = 99.7734% (3082/3089)

Most kernel elements:

Kij

{

= 1 if i = j,

→ 0 if i 6= j.

. – p.26/124



Data Scaling

Without scaling
Attributes in greater numeric ranges may dominate

Example:

height sex
x1 150 F
x2 180 M
x3 185 M

and
y1 = 0, y2 = 1, y3 = 1.
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The separating hyperplane

x1

x2x3

Decision strongly depends on the first attribute

What if the second is more important
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Linearly scale the first to [0, 1] by:

1st attribute− 150

185− 150
,

New points and separating hyperplane

x1

x2x3
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Transformed to the original space,

x1

x2x3

The second attribute plays a role
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After Data Scaling

A common mistake

$./svm-scale -l -1 -u 1 train.1 > train.1.scale
$./svm-scale -l -1 -u 1 test.1 > test.1.scale
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Same factor on training and testing

$./svm-scale -s range1 train.1 > train.1.scale
$./svm-scale -r range1 test.1 > test.1.scale
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict
→ Accuracy = 96.15%

We store the scaling factor used in training
and apply them for testing set
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More on Training

Train scaled data and then prediction

$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict
→ Accuracy = 96.15%

Training accuracy now is

$./svm-predict train.1.scale train.1.scale.model o
Accuracy = 96.439% (2979/3089) (classification)

Default parameter

C = 1, γ = 0.25
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Different Parameters

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 train.1.scale
./svm-predict train.1.scale train.1.scale.model o
Accuracy = 100% (3089/3089) (classification)

100% training accuracy but

$./svm-predict test.1.scale train.1.scale.model o
Accuracy = 82.7% (3308/4000) (classification)

Very bad test accuracy

Overfitting happens
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Overfitting and Underfitting

When training and predicting a data,
we should

Avoid underfitting: small training error
Avoid overfitting: small testing error
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● and ▲: training;© and4: testing
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Overfitting

In theory

You can easily achieve 100% training accuracy

This is useless

Surprisingly

Many application papers did this
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Parameter Selection

Is very important

Now parameters are

C, kernel parameters

Example:

γ of e−γ‖xi−xj‖
2

a, b, d of (xT
i xj/a + b)d

How to select them ?

So performance better ?
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Performance Evaluation

Training errors not important; only test errors count

l training data, xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , l, a
learning machine:

x→ f(x, α), f(x, α) = 1 or − 1.

Different α: different machines

The expected test error (generalized error)

R(α) =

∫

1

2
|y − f(x, α)|dP (x, y)

y: class of x (i.e. 1 or -1)
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P (x, y) unknown, empirical risk (training error):

Remp(α) =
1

2l

l
∑

i=1

|yi − f(xi, α)|

1
2 |yi − f(xi, α)| : loss, choose 0 ≤ η ≤ 1, with probability
at least 1− η:

R(α) ≤ Remp(α) + another term

A good pattern recognition method:
minimize both terms at the same time
Remp(α)→ 0
another term→ large
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Performance Evaluation (Cont.)

In practice

Available data⇒ training and validation

Train the training

Test the validation

k-fold cross validation:

Data randomly separated to k groups.
Each time k − 1 as training and one as testing
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CV and Test Accuracy

If we select parameters so that CV is the highest,

Does CV represent future test accuracy ?

Slightly different

If we have enough parameters, we can achieve 100%
CV as well

e.g. more parameters than # of training data
But test accuracy may be different

So

Available data with class labels
⇒ training, validation, testing
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Using CV on training + validation

Predict testing with the best parameters from CV
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A Simple Procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K(x, y) = e−γ‖x−y‖2

3. Use cross-validation to find the best parameter C and γ

4. Use the best C and γ to train the whole training set

5. Test

Best C and γ by training k − 1 and the whole ?

In theory, a minor difference

No problem in practice
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Parameter Selection Procedure in LIBSVM

grid search + CV

$./grid.py train.1 train.1.scale

[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

grid.py: a python script in the python directory of LIBSVM
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Easy parallelization on a cluster
$./grid.py train.1 train.1.scale

[linux1] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[linux7] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.
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Parallel Parameter Selection

Specify machine names in grid.py

telnet_workers = []
ssh_workers = [’linux1’,’linux1’,’linux2’,
’linux3’]
nr_local_worker = 1

linux1: more powerful or two CPUs

A simple centralized control

Load balancing not a problem

We can use other tools

Too simple so not consider them
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Contour of Parameter Selection
d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2     98.8

    98.6
    98.4
    98.2
      98
    97.8
    97.6
    97.4
    97.2
      97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)
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Simple script in LIBSVM

easy.py: a script for dummies

$python easy.py train.1 test.1
Scaling training data...
Cross validation...
Best c=2.0, g=2.0
Training...
Scaling testing data...
Testing...
Accuracy = 96.875% (3875/4000)
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Example: Engine Misfire
Detection
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Problem Description

First problem of IJCNN Challenge 2001, data from Ford

Given time series length T = 50, 000

The kth data

x1(k), x2(k), x3(k), x4(k), x5(k), y(k)

y(k) = ±1: output, affected only by x1(k), . . . , x4(k)

x5(k) = 1, kth data considered for evaluating accuracy

50,000 training data, 100,000 testing data (in two sets)
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Past and future information may affect y(k)

x1(k): periodically nine 0s, one 1, nine 0s, one 1, and so
on.

Example:

0.000000 -0.999991 0.169769 0.000000 1.000000
0.000000 -0.659538 0.169769 0.000292 1.000000
0.000000 -0.660738 0.169128 -0.020372 1.000000
1.000000 -0.660307 0.169128 0.007305 1.000000
0.000000 -0.660159 0.169525 0.002519 1.000000
0.000000 -0.659091 0.169525 0.018198 1.000000
0.000000 -0.660532 0.169525 -0.024526 1.000000
0.000000 -0.659798 0.169525 0.012458 1.000000

x4(k) more important
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Background: Engine Misfire Detection

How engine works

Air-fuel mixture injected to cylinder

intact, compression, combustion, exhaustion

Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite

Frequent misfires: pollutants and costly replacement

On-board detection:

Engine crankshaft rational dynamics with a position
sensor

Training data: from some expensive experimental
environment
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Encoding Schemes

For SVM: each data is a vector

x1(k): periodically nine 0s, one 1, nine 0s, one 1, ...

10 binary attributes
x1(k − 5), . . . , x1(k + 4) for the kth data
x1(k): an integer in 1 to 10
Which one is better
We think 10 binaries better for SVM

x4(k) more important

Including x4(k − 5), . . . , x4(k + 4) for the kth data

Each training data: 22 attributes
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Training SVM

Selecting parameters; generating a good model for
prediction

RBF kernel K(xi,xj) = φ(xi)
T φ(xj) = e−γ‖xi−xj‖

2

Two parameters: γ and C

Five-fold cross validation on 50,000 data

Data randomly separated to five groups.

Each time four as training and one as testing

Use C = 24, γ = 22 and train 50,000 data for the final
model
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d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2     98.8
    98.6
    98.4
    98.2
      98
    97.8
    97.6
    97.4
    97.2
      97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)
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Test set 1: 656 errors, Test set 2: 637 errors

About 3000 support vectors of 50,000 training data

A good case for SVM

This is just the outline. There are other details.

It is essential to do model selection.
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SVM for Vehicle Classification
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Machine Learning Is Sometimes An Art

But not a science

For complicated problems, there is no real systematic
procedure

Some tricks + domain knowledge can largely help
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An Example: Vehicle Classification

Vehicle classification in distributed sensor networks

http://www.ece.wisc.edu/~sensit and
http://mmsp-2.caenn.wisc.edu/events.zip

Prepared by Duarte and Hu in University of
Wisconsin

Three classes of data:

two vehicles and noise

Each instance: acoustic and seismic features

# features of each part: 50 and 50
# data: 98528
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Distribution of data:
#class 1 #class 2 #class 3

1 1 2
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How Data Are Generated

Wireless distributed sensor networks (WDSN)

Several sensors in a field

Event extraction

Only information when the vehicle is close enough to
the sensor

Then a time series

FFT-based features

Noise: high-energy factors such as wind and radio
chatter.
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Sample instances: Acoustic Data

2 1:-1.8893190e-02 2:-7.2501253e-03 3:-9.3349372e-03 4:8.2397278e-02 5:1.0000000e+00

6:2.8431799e-02 7:-3.9595759e-03 8:-2.2467102e-02 9:-2.7549071e-03 10:-2.2973921e-

02 11:-2.4513591e-02 12:-2.7172349e-02 13:-2.2274419e-02 14:-1.8458129e-02 15:-

2.6647322e-02 16:-2.6252666e-02 17:-2.2212002e-02 18:-2.5001779e-02 19:-2.6927617e-

02 20:-2.7374419e-02 21:-2.7112618e-02 22:-2.4502704e-02 23:-2.5475226e-02 24:-

2.5618921e-02 25:-2.6852989e-02 26:-2.5735666e-02 27:-2.7456095e-02 28:-2.7803905e-

02 29:-2.6621734e-02 30:-2.4935499e-02 31:-2.7729578e-02 32:-2.6718499e-02 33:-

1.9738297e-02 34:-2.2609663e-02 35:-2.3814977e-02 36:-2.6252692e-02 37:-2.4909885e-

02 38:-2.5807719e-02 39:-2.4148006e-02 40:-2.5490619e-02 41:-2.7913212e-02 42:-

2.7597027e-02 43:-2.5268295e-02 44:-2.7936994e-02 45:-2.7851349e-02 46:-2.7829329e-

02 47:-2.7685600e-02 48:-2.5771240e-02 49:-2.5038023e-02 50:-2.4134665e-02
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Results from the Authors

Paper available from
http://www.ece.wisc.edu/~sensit/publications/

Three-fold CV Accuracy
Method Acoustic Seismic
k-nearest neighbor 69.36% 56.24%
Maximal likelihood 68.95% 62.81%
SVM 69.48% 63.79%

We think more investigation may improve the accuracy

So I decided to let students do a project on this
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A report presented in my statistical learning theory
course

By C.-C. Chou, S.-T. Wang, R.-E. Fan, C.-W. Lin, and
C.-C. Lin

Accuracy improved to 87%
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Authors’ Approach

Data split to three folds

Two as training and one as validation

Average of three validation accuracy reported

Polynomial kernel used

(1 + x
T
i xj)

T

C = 1

No parameter selection
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My Students’ Approach

Cross-validation is a biased estimate

Too many parameters: CV accuracy overfitted

Practically ok for two/three parameters

We do a more formal way

98528⇒ 4/5 training and validation, 1/5 testing
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Kernel/Parameter Selection

RBF kernel
e−γ‖xi−xj‖

2

Parameter selection very important

C and γ

Fewer than polynomial kernel

Huge training time

10% of the 4/5 training data for cross-validation
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Issue: best (C, γ) for 10% may not be the best for the
whole

In theory C should be decreased a bit

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

Need further investigation
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Results

Test accuracy (log2 C, log2 γ)
Acoustic Seismic

75.01 (7,-2) 72.03 (18,-10)

Not very good

Try to combine two features

New accuracy 83.70 (9,-6)

This case:

Combining features seems to provide more information
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Data Scaling

Earlier we mention the importance of data scaling

How about this data set ?

Each attribute in a suitable range ?

First 4 attributes of training/validation:

X1 X2 X3 X4

Min.:-0.5988 Min.:-0.5194 Min.:-0.4806 Min.:-0.5111

Mean: 0.1319 Mean: 0.2481 Mean: 0.1512 Mean: 0.1844

Max.: 1.0000 Max.: 1.0000 Max.: 1.0000 Max.: 1.0000

Other features similar
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Data Scaling (Cont.)

From the authors’ original matlab code: x ∈ Rn:

xi ←
xi

maxj(|xj |)

Instance-wise scaling

Earlier: feature-wise scaling

First 4 features scaled to [−1, 1]

X1 X2 X3 X4

Min.:-1.0000 Min.:-1.0000 Min.:-0.9999 Min.:-1.0000

Mean:-0.8570 Mean:-0.7580 Mean:-0.8389 Mean:-0.8351

Max.: 0.9703 Max.: 1.0000 Max.: 0.8968 Max.: 1.0000
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Other features similar

max of X1 < 1 as

we scale all and the above: only 4/5

Very different distributions

How attributes scaled to [−1, 1]:

xi −min

max−min
× 2− 1
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In original data, most xi close to min

After instance-wise scaling, may not be that close to the
new min

Instance-wise scaling may not be that appropriate
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After Scaling

New results
Acoustic Seismic Combined

79.71 (6,-2) 76.68 (6,-2) 87.18 (5,-3)

Compare to earlier results
Acoustic Seismic Combined

75.01 (7,-2) 72.03 (18,-10) 83.70 (9,-6)

New results consistently better

Feature-wise scaling seems more appropriate

Six data sets available at

www.csie.ntu.edu.tw/~cjlin/libsvmtools/t/vehicle
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Issues not Investigated Yet

If most values close to min of the features

are these values outliers or useful information ?

Is 86% enough for practical use ?

Originally
Assault Amphibian Vehicle (AAV)
Main Battle Tank (M1)
High Mobility Multipurpose Wheeled Vehicle
(HMMWV)
Dragon Wagon (DW)
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So five-class problem

Now we have only AAV, DW, and noise

# of SVs is an issue

Now around 20,000 SVs
Can they be stored in a sensor ?

Further improvement
Feature selection
How about other methods
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Lesson from This Experiment

No systematic way for a machine learning task

However, some simple techniques/analysis help

Better understanding on ML methods also helps

Of course you need good luck
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SVM Optimization Problems
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SVM Primal and Dual

Standard SVM

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

w: huge vector variable

Possibly infinite variables

Practically we solve a different but strongly related
problem
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Dual problem

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,

l
∑

i=1

yiαi = 0.

K(xi,xj) = φ(xi)
Tφ(xj) available

using special φ

α: l variables; finite

Original SVM: called primal
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Primal Dual Relationship

At optimum

w̄ =

l
∑

i=1

ᾱiyiφ(xi) (1)

1

2
w̄

T
w̄ + C

l
∑

i=1

ξ̄i = e
T ᾱ− 1

2
ᾱTQᾱ. (2)

where e = [1, . . . , 1]T .

Primal objective value = - Dual objective value

LIBSVM solves dual⇒ negative objective value

How does this dual come from ?
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Derivation of the Dual

We follow the description in [Bazaraa et al., 1993]

Consider a simpler problem

min
w,b

1

2
w

T
w

subject to yi(w
Tφ(xi) + b) ≥ 1, i = 1, . . . , l.

Its dual

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to 0 ≤ αi, i = 1, . . . , l,

l
∑

i=1

yiαi = 0.
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Lagrangian Dual

Defined as
max
α≥0

(min
w,b

L(w, b,α)), (3)

where

L(w, b,α) =
1

2
‖w‖2 −

l
∑

i=1

αi

(

yi(w
Tφ(xi) + b)− 1

)

. (4)

Minimize with respect to the primal variables w and b

Maximize with respect to the dual variables αi.

There are different dual problems

Lagrangian dual is one
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Assume (w̄, b̄) optimal for the primal with optimal
objective value γ = 1

2‖w̄‖2.

No (w, b) satisfies

1

2
‖w‖2 < γ and yi(w

Tφ(xi) + b) ≥ 1, i = 1, . . . , l. (5)

There is ᾱ ≥ 0 such that for all w, b

1

2
‖w‖2 − γ −

l
∑

i=1

ᾱi

(

yi(w
Tφ(xi) + b)− 1

)

≥ 0. (6)

Quite intuitive, detailed proof omitted
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Thus
max
α≥0

min
w,b

L(w, b,α) ≥ γ. (7)

i.e., for any α,

min
w,b

L(w, b,α) ≤ L(w̄, b̄,α),

so

max
α≥0

min
w,b

L(w, b,α) ≤ max
α≥0

L(w̄, b̄,α) =
1

2
‖w̄‖2 = γ. (8)

“=” holds

Strong duality: primal and dual the same optimal
objective value.
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With ᾱi ≥ 0 and yi(w̄
Tφ(xi) + b̄)− 1 ≥ 0,

ᾱi[yi(w̄
Tφ(xi) + b̄)− 1] = 0, i = 1, . . . , l,

Complementarity condition.

Simplify the dual, when α is fixed,

min
w,b

L(w, b,α)

=

{

−∞ if
∑l

i=1 αiyi 6= 0,

minw

1
2w

T
w −

∑l
i=1 αi[yi(w

T φ(xi)− 1] if
∑l

i=1 αiyi = 0.

(9)
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If
∑l

i=1 αiyi 6= 0,

decrease −b
∑l

i=1 αiyi in L(w, b,α) to −∞

If
∑l

i=1 αiyi = 0,

Optimum of 1
2w

T
w −

∑l
i=1 αi[yi(w

Tφ(xi)− 1]

happens when

∂

∂w
L(w, b,α) = 0.

Thus,

w =
l

∑

i=1

αiyiφ(xi). (10)
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More details

∂

∂w
L(w, b,α) =







∂
∂w1

L(w, b,α)
...

∂
∂wn

L(w, b,α)







Assume w ∈ Rn

L(w, b,α) rewritten as

1

2

n
∑

j=1

w2
j −

l
∑

i=1

αi[yi(
n

∑

j=1

wjφ(xi)j − 1]
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So

∂

∂wj
L(w, b,α) = wj −

l
∑

i=1

αiyiφ(xi)j = 0

Note that

w
T
w =

( l
∑

i=1

αiyiφ(xi)

)T ( l
∑

j=1

αjyjφ(xj)

)

=
∑

i,j

αiαjyiyjφ(xi)
Tφ(xj)
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The dual is

max
α≥0

{

∑l
i=1 αi − 1

2

∑

i,j αiαjyiyjφ(xi)
Tφ(xj) if

∑l
i=1 αiyi = 0,

−∞ if
∑l

i=1 αiyi 6= 0.

−∞ definitely not maximum of the dual

Dual optimal solution not happen when
∑l

i=1 αiyi 6= 0.

Dual simplified to

max
α∈Rl

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
Tφ(xj)

subject to αi ≥ 0, i = 1, . . . , l, and
l

∑

i=1

αiyi = 0.
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Karush-Kuhn-Tucker (KKT) optimality conditions of the
primal:

ᾱi[yi(w̄
Tφ(xi) + b̄)− 1] = 0, i = 1, . . . , l,

l
∑

i=1

αiyi = 0, αi ≥ 0,∀i,

w =
l

∑

i=1

αiyiφ(xi).

(w, b) optimal⇔ if feasible and there is α which
satisfies KKT

The derivation with additional variables ξi

Similar
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An Example

Two training data in R1:

4
0

©
1

What is the separating hyperplane ?
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Primal Problem

x1 = 0,x2 = 1 with y = [−1, 1]T .

Primal problem

min
w,b

1

2
w2

subject to w · 1 + b ≥ 1, (11)

−1(w · 0 + b) ≥ 1. (12)
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−b ≥ 1 and w ≥ 1− b ≥ 2.

For any (w, b) satisfying two inequality constraints

w ≥ 2

We are minimizing 1
2w2

The smallest possibility is w = 2.

(w, b) = (2,−1) is the optimal solution.

The separating hyperplane 2x− 1 = 0
In the middle of the two training data:

4
0

©
1

•
x = 1/2
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Dual Problem

Formula derived before

min
α∈Rl

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj)−

l
∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , l, and
l

∑

i=1

αiyi = 0.

Get the objective function

x
T
1 x1 = 0,xT

1 x2 = 0

x
T
2 x1 = 0,xT

2 x2 = 1
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Objective function

1

2
α2

1 − (α1 + α2)

=
1

2

[

α1 α2

]

[

0 0

0 1

][

α1

α2

]

−
[

1 1
]

[

α1

α2

]

.

Constraints

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.
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α2 = α1 to the objective function,

1

2
α2

1 − 2α2

Smallest value at α1 = 2.

α2 as well

If smallest value < 0

clipped to 0
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Dual Problems for Other Formulas

So we think that for any optimization problem

Lagrangian dual exists

This is wrong

Remember we calculate

min
1

2
w

T
w −

l
∑

i=1

αi[yi(w
T φ(xi)− 1]

by
∂

∂w
L(w, b,α) = 0.
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Note that
f ′(x) = 0⇔ x minimum

is wrong

Example
f(x) = x3, x = 0 not minimum

This function must satisfy certain conditions

Some papers wrongly derived the dual of their

new formulations without checking conditions
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[2, 2]T satisfies constraints 0 ≤ α1 and 0 ≤ α2

It is optimal

Primal-dual relation

w = y1α1x1 + y2α2x2

= 1 · 2 · 1 + (−1) · 2 · 0
= 2

The same as solving the primal
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Multi-class Classification

k classes

One-against-all: Train k binary SVMs:

1st class vs. (2− k)th class
2nd class vs. (1, 3− k)th class

...

k decision functions

(w1)Tφ(x) + b1

...

(wk)Tφ(x) + bk
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Select the index with the largest (wj)T φ(x) + bj
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Multi-class Classification (Cont.)

One-against-one: train k(k − 1)/2 binary SVMs

(1, 2), (1, 3), . . . , (1, k), (2, 3), (2, 4), . . . , (k − 1, k)

Select the one with the largest vote

This is the method used by LIBSVM

Try a 4-class problem

6 binary SVMs
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$libsvm-2.5/svm-train bsvm-2.05/vehicle.scale
optimization finished, #iter = 173
obj = -142.552559, rho = 0.748453
nSV = 194, nBSV = 183
optimization finished, #iter = 330
obj = -149.912202, rho = -0.786410
nSV = 227, nBSV = 217
optimization finished, #iter = 169
obj = -139.655613, rho = 0.998277
nSV = 186, nBSV = 177
optimization finished, #iter = 268
obj = -185.161735, rho = -0.674739
nSV = 253, nBSV = 244
optimization finished, #iter = 477
obj = -378.264371, rho = 0.177314
nSV = 405, nBSV = 394
optimization finished, #iter = 337
obj = -186.182860, rho = 1.104943
nSV = 261, nBSV = 247
Total nSV = 739 . – p.105/124



There are many other methods

A comparison in [Hsu and Lin, 2002]

For a software

We select one which is generally good but not always
the best

Finally I chose 1 vs. 1

Similar accuracy to others

Shortest training

A bit longer on testing than 1 vs. all
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Why Shorter Training Time

1 vs. 1

k(k − 1)/2 problems, each 2l/k data on average

1 vs. all

k problems, each l data

If solving the optimization problem:

polynomial of the size with degree d

Their complexities

k(k − 1)

2
O

((

2l

k

)d)

vs. kO(ld)
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SVM Regression
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Outline

Support vector regression (SVR)

Practical examples

Discussion
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Support Vector Regression (SVR)

Support vector machines: a new method for data
classification and prediction

Given training data (x1, y1), . . . , (xl, yl)

Regression: find a function so that

f(xi) ≈ yi

Least square regression:

min
w,b

l
∑

i=1

(yi − (wT
xi + b))2

. – p.110/124



x

y

w
T
x + b

This is equivalent to

min
w,b,ξ,ξ∗

l
∑

i=1

ξ2
i + (ξ∗i )2

subject to −ξ∗i ≤ yi − (wT
xi + b) ≤ ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.
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A quadratic programming problem

L1-norm regression

min
w,b

l
∑

i=1

|yi − (wT
xi + b)|

or

min
w,b,ξ,ξ∗

l
∑

i=1

(ξi + ξ∗i )

subject to −ξ∗i ≤ yi − (wT
xi + b) ≤ ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.
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A linear programming problem

This is equivalent to

min
w,b,ξ,ξ∗

C
l

∑

i=1

(ξi + ξ∗i )

subject to −ξ∗i ≤ yi − (wT
xi + b) ≤ ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.

C: a constant
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Linear support vector regression

min
w,b,ξ,ξ∗

1

2
w

T
w + C

l
∑

i=1

(ξi + ξ∗i )

subject to −ξ∗i − ε ≤ yi − (wT
xi + b) ≤ ε + ξi,

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , l.

ε-insensitive loss function
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A tube
−ε ≤ y − (wT

x + b) ≤ ε

Data in the tube considered no error

Most training data in the tube
1
2w

T
w: regularization, w

T
x + b more smooth

Similar to the classification case

General support vector regression:

Data mapped to a higher space by φ(x)

The new approximation function

w
T φ(x) + b
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ξi

ξ∗i

w
T φ(x) + b =

[

ε
0
−ε

]

Regression in a higher dimensional space
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Standard SVR

min
w,b,ξ,ξ∗

1

2
w

T
w + C

l
∑

i=1

ξi + C
l

∑

i=1

ξ∗i

−ε− ξ∗i ≤ yi − (wT φ(xi) + b) ≤ ε + ξi,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l.

Data in high dimensional spaces

Possible w
T φ(xi) + b = yi, i = 1, . . . , l

⇒ overfitting

This is like in theory 100% training accuracy in
classification
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Good regression methods: balance between overfitting
and underfitting

min 1
2w

T
w: avoid overfitting

min
∑l

i=1(ξi + ξ∗i ): avoid underfitting
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Support vector regression using LIBSVM

Using the option -s 3

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
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Check a regression data

$head -n 5 svrprob/trans/abalone.scale.shuffle.train.1
13 1:-1 2:0.310811 3:0.193277 4:-0.707965 5:-0.273012 6:-0.441693 7:-0.175958 8:-0.324278
12 1:-1 2:0.797297 3:0.764706 4:-0.637168 5:0.86369 6:0.301118 7:0.634146 8:0.101302
9 1:-1 2:-0.121622 3:-0.159664 4:-0.769912 5:-0.771641 6:-0.848243 7:-0.766551 8:-0.765705
8 1:-1 2:0.189189 3:0.142857 4:-0.761062 5:-0.212691 6:-0.247604 7:-0.132404 8:-0.432937
19 1:1 2:0.202703 3:0.12605 4:-0.752212 5:-0.427732 6:-0.615815 7:-0.5 8:-0.414827

Additional parameter ε

$svm-train -s 3 -c 64 -g 0.25 -p 0.5 svrprob/trans/abalone.scale.shuffle.train.1
.....................................*...*
optimization finished, #iter = 40152
nu = 0.710465
obj = -54155.806305, rho = -11.610859
nSV = 592, nBSV = 547 . – p.120/124



Test

$svm-predict svrprob/trans/abalone.scale.shuffle.test.1 abalone.scale.shuffle.train.1.model o
Accuracy = 0% (0/200) (classification)
Mean squared error = 5.00931 (regression)
Squared correlation coefficient = 0.58387 (regression)

Test data

$head -n 5 svrprob/trans/abalone.scale.shuffle.test.1
8 1:1 2:0.0945946 3:0.0420168 4:-0.823009 5:-0.640423 6:-0.649361 7:-0.710801 8:-0.697793
20 2:0.756757 3:0.747899 4:-0.690265 5:0.662358 6:0.220447 7:0.571429 8:0.92077
7 1:1 2:0.175676 3:0.142857 4:-0.769912 5:-0.529573 6:-0.552716 7:-0.503484 8:-0.636672
8 1:-1 2:0.189189 3:0.12605 4:-0.752212 5:-0.470427 6:-0.456869 7:-0.54007 8:-0.734012
13 1:-1 2:0.608108 3:0.529412 4:-0.681416 5:0.314532 6:0.477636 7:0.0348432 8:-0.11262
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Check

$head -n 5 o
7.62474
14.7385
8.40741
7.13157
9.74578
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SVR Performance Evaluation

Not accuracy any more

MSE (Mean Square Error):

l
∑

i=1

(yi − ŷi)
2

Squared correlation coefficient (also called r2)

∑l
i=1(yi − ȳ)2(ŷi − ¯̂y)2

∑l
i=1(yi − ȳ)2

∑l
i=1(ŷi − ¯̂y)2

ȳ: mean of yi, i = 1, . . . , l

0 ≤ r2 ≤ 1: close to 1⇒ better
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Conclusions

Dealing with data is interesting

especially if you get good accuracy

Some basic understandings are essential when
applying methods

e.g. the importance of validation

No method is the best for all data

Deep understanding of one or two methods very helpful
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