
Introduction to the Theory of Computation 2025 — Final

Solutions

Problem 1 (10 pts). Please prove that the language

ADFA = {⟨B,w⟩ | B = ⟨Q,Σ, δ, q0, F ⟩ is a DFA that accepts w} is decidable.

Note that you can give a high-level description of a Turing machine instead of explicitly constructing it.

Solution.

Step 1: Put the encoding ⟨B,w⟩ on the input tape, where B = ⟨Q,Σ, δ, q0, F ⟩.

Step 2: Check whether w ∈ Σ∗ and whether B is a valid DFA. If not, reject.

Step 3: Simulate the DFA B on input the string w according to the transition function δ.

Step 4: After processing the last symbol of w, check whether the current state is a final state. If it is,
accept; otherwise, reject.

Problem 2 (30 pts). Assume f and g are functions f, g : N → R+. Prove or disprove the sub-problems
by using the following definitions.

Definition 1. We say
f(n) = O(g(n))

if there exists c > 0 and n0 ∈ N such that for every integer n ≥ n0, f(n) ≤ cg(n).

Definition 2. We say
f(n) = o(g(n))

if for each c > 0, there exists n0 ∈ N such that for every integer n ≥ n0, f(n) ≤ cg(n).

To prove the statements, you must give the specific n0 for one c or all c’s, depending on the definition
of big-O or small-o. To disprove the statements, you must prove the opposite of the definition in detail.
Note that we use the natural logorithm in this problem, i.e.,

log n := loge n.

(a) (5 pts) Let

f(n) = n
1

logn and g(n) = 1.

Prove or disprove that f(n) = O(g(n)).

1

(b) (5 pts) Please show that for every integer n ≥ 2, we have

n

4
log

(
3n

4

)
>

1

8
n log n. (1)

(c) (5 pts) Let
f(n) = log(n!) and g(n) = n log n.

Prove or disprove that f(n) = o(g(n)). Hint: You may need to use (1) in your proof, and think
about the relation between

n∑
k=1

log k and
n∑

k=⌊3n/4⌋

log k.

(d) (5 pts) Let
f(n) = O(g(n)).

Prove or disprove that 2f(n) = O(2g(n)).

(e) (5 pts) We define
f(n) = f1(n) + f2(n),

where
f1(n) = o(g(n)), and f2(n) = o(g(n)).

Please prove that
f(n) = o(g(n))

with Definition 2. Note that proving with the limit would not receive any points.

(f) (5 pts) Let
f(n) = e

√
n + 7n and g(n) = 5

√
n.

Prove or disprove that f(n) = o(g(n)). Hint: The inequality log n <
√
n might be useful.

Solution.

(a) To show that there exist c ≥ 0 and n0 ∈ N such that for every integer n ≥ n0,

f(n) ≤ cg(n).

We can take logarithms on both sides to derive

log f(n) ≤ log(cg(n)) ≡ 1

log n
log n ≤ log c ≡ 1 ≤ log c.

By taking
c = 3 and n0 = 1,

we obtain
log f(n) = 1 ≤ log(3) = log(3 · g(n)), ∀n ≥ n0,

which shows that f(n) = O(g(n)).

2

(b) To show that for every n ≥ 2,
n

4
log

(
3n

4

)
>

1

8
n log n.

This inequality is equivalent to

2 log

(
3n

4

)
> log n ≡

(
3n

4

)2

> n ≡ 9n

16
> 1.

(c) The opposite of Definition 2 is

For some c > 0 such that for any n0 ∈ N, there exists n ≥ n0 so that we have f(n) > c g(n).

By combining (1) with the definition of f(n), we can derive that

log(n!) =
n∑

k=1

log k ≥
n∑

k=⌊3n/4⌋

log k ≥ n

4
log

(
3n

4

)
>

1

8
n log n, for every integer n ≥ 2.

Let us take

c =
1

8
.

Then, we can prove that for every n ≥ 2,

f(n) = log(n!) >
1

8
g(n) = cg(n),

and which implies that

for any n0 ∈ N, there exists n ≥ n0 such that f(n) > cg(n).

Thus the statement is disproved.

(d) The opposite of
2f(n) = O(2g(n))

is
for all c > 0 and n0 ∈ N, there exists an n ≥ n0 such that 2f(n) > c2g(n).

Let us take f(n) = 2n and g(n) = n, such that f(n) and g(n) satisfy f(n) = O(g(n)). Thus, for
any c > 0 and n0 ∈ N, we can pick n ≥ max{c, n0} such that

2f(n)

2g(n)
=

22n

2n
=

4n

2n
= 2n > c.

Therefore, the statement is disproved.

(e) Consider any real number c > 0. Let

c1 = c2 =
c

2
.

By Definition 2, we can find n1, n2 ∈ N such that

f1(n) ≤ c1g(n) for every integer n > n1

3

and
f2(n) ≤ c2g(n) for every integer n > n2.

If we take
n0 = max(n1, n2),

then for every integer n > n0, we can see that

f(n) = f1(n) + f2(n) ≤
c

2
g(n) +

c

2
g(n) = cg(n).

Therefore, f(n) = o(g(n)).

(f) We utilize the property established in Problem 2 (e) to show that f(n) = o(g(n)). First, let

f1(n) = e
√
n and f2(n) = 7n.

For any real number c > 0, we determine n1 and n2 by the following two inequalities

e
√
n ≤ c · 5

√
n (2)

and
7n ≤ c · 5

√
n, (3)

respectively. From inequality (2), we can derive

e
√
n ≤ c · 5

√
n

⇒
√
n ≤ log c+

√
n log 5

⇒
√
n(1− log 5) ≤ log c.

Since we use the natural log in this problem, it is clear that 1− log 5 < 0. Consequently, we obtain

√
n(1− log 5) ≤ log c

⇒
√
n ≥ log c

1− log 5

⇒n ≥
(

log c

1− log 5

)2

. (4)

The inequality (4) implies that we can choose

n1 = max

(⌈(
log c

1− log 5

)2
⌉
, 1

)
such that

f1(n) ≤ cg(n)

holds for all integers n ≥ n1.

From the inequality (3), we obtain

7n ≤ c · 5
√
n

⇒ log 7 + log n ≤ log c+
√
n log 5

⇒ log 7 + log n−
√
n log 5 ≤ log c. (5)

4

Furthermore, by utilizing the hint, we have

log 7 + log n−
√
n log 5 < log 7 +

√
n−

√
n log 5. (6)

The combination of inequalities (5) and (6) implies that we can use the following inequality

log 7 +
√
n−

√
n log 5 ≤ log c (7)

to determine a suitable n2. From the inequality (7), we can further derive

log 7 +
√
n−

√
n log 5 ≤ log c

⇒
√
n(1− log 5) ≤ log c− log 7

⇒
√
n ≥ log c− log 7

1− log 5

⇒n ≥
(
log c− log 7

1− log 5

)2

. (8)

The inequality (8) implies that we can choose

n2 = max

(⌈(
log c− log 7

1− log 5

)2
⌉
, 1

)
such that

f2(n) ≤ cg(n)

holds for all integers n ≥ n2. Since we have already shown that

f1(n) = o(g(n)) and f2 = o(g(n)),

the property proven in Problem 2 (e) directly yields f(n) = o(g(n)).

Problem 3 (40 pts). In Midterm 2, you learned how to design a TM for the task “string masking.” For
example, at the beginning of the TM, we have the tape

a b a a b # 0 1 0 1 0 # ⊔ · · · ,

which represents that we have the input string

abaab

and the mask
01010.

After the masking, i.e.,
a b a a b
0 1 0 1 0

⇒ ba,

we should add the result at the end of the tape as

· · · # · · · # b a ⊔ · · · .

Note that we assume the input tape must be

{a, b}∗#{0, 1}∗#.

Moreover, the input and the mask strings already have the same length (i.e., no need to check this).

5

(a) (10 pts) As the solution, we have the TM

q0

q7

q6

q5

q1 q2

q3 q4

qa

a → ⊔, R b → ⊔, R

1 → ⊔, R 1 → ⊔, R

⊔ → a, L ⊔ → b, L

0 → ⊔, L 0 → ⊔, L

⊔ → L

→ L

⊔ → R

→ R

{a, b,#,⊔} → R {a, b,#,⊔} → R

{a, b, 0, 1,#} → R {a, b, 0, 1,#} → R

{a, b,#, 0, 1} → L

⊔ → L

{a, b} → L

Please derive the steps that the TM uses on the input

aba#101#⊔
and complete the parts (I) · · · (VIII) of the following table. Note that the 1st round and the 2nd
round handle the underlined bits of

aba#101# ⊔ and ⊔ ba# ⊔ 01#a⊔, respectively.

terms 1st round # step(s) 2nd round # step(s)
q0 → q1 or q0 → q2 ⊔q1ba#101#⊔ 1 ⊔ ⊔ q2a# ⊔ 01#a⊔ 1
q1 → q1 or q2 → q2 ⊔ba#q1101#⊔ (I) ⊔ ⊔ a# ⊔ q201#a⊔ (VI)

q1 → q3 or q2 → q4 ⊔ba# ⊔ q301#⊔ 1 0
q3 → q3 or q4 → q4 ⊔ba# ⊔ 01#q3⊔ (II) 0

q3 → q5 or q4 → q5 ⊔ba# ⊔ 01q5#a⊔ 1 0
q5 → q5 ⊔ba#q5 ⊔ 01#a⊔ (III) 0

q5 → q6 ⊔baq6# ⊔ 01#a⊔ 1 0
q1 → q6 or q2 → q6 ⊔ ⊔ a#q6 ⊔ ⊔1#a⊔ 1

q6 → q6 ⊔baq6# ⊔ 01#a⊔ (IV) ⊔ ⊔ aq6# ⊔ ⊔1#a⊔ (VII)

q6 → q7 ⊔bq7a# ⊔ 01#a⊔ 1 ⊔ ⊔ q7a# ⊔ ⊔1#a⊔ (VIII)

q7 → q7 q7 ⊔ ba# ⊔ 01#a⊔ (V) ⊔q7 ⊔ a# ⊔ ⊔1#a⊔ 1

q7 → q0 ⊔q0ba# ⊔ 01#a⊔ 1 ⊔ ⊔ q0a# ⊔ ⊔1#a⊔ 1
q0 → qa 0 0

6

You can directly write your answers of (I) · · · (VIII) without any explanation.

(b) (5 pts) Please show the time complexity of this single-tape Turing machine in big-O notation with
respect to the input string length n.

(c) (15 pts) Please follow the steps to design a two-tape TM:

Step 1: Copy the first part of the string (i.e., the part before the first #) into the 2nd tape.

Step 2: Move the head of the 1st tape to the position of the second #.

Step 3: Scan the mask string from right to left. During the scan, we apply the mask to the corre-
sponding character in the 2nd tape. If the mask bit is 1, we keep the character. Otherwise,
we modify the character to ⊔.

Step 4: Move the head of the 1st tape to the answer part (i.e., the part after the second #).

Step 5: Write unmasked characters from the 2nd tape to the 1st tape. The head of the two tapes
should move from left to right.

Note that your two-tape TM must satisfy the following conditions.

• Σ = {#, a, b, 0, 1},
• Γ = Σ ∪ {⊔},
• no more than 6 states are used (the reject state is excluded),

• the head can move left, move right, or stay in a two-tape TM, and

• do not modify any input string before the second # in the 1st tape.

Please give the explanation for your diagram. To simplify the diagram, you can utilize

{
{0, 1} → L

{a, b,⊔} → S

to represent

{
x → L

y → S
,∀x ∈ {0, 1},∀y ∈ {a, b,⊔}

(d) (5 pts) Please simulate your two-tape TM in (c) with the input

ab#01# ⊔ · · · .

(e) (5 pts) Please show the time complexity of your two-tape TM in big-O notation with respect to the
input string length n.

Solution.

7

(a) After directly simulating the input string, we know that

(I) = 3, (II) = 3, (III) = 3, (IV) = 0, (V) = 2, (VI) = 3, (VII) = 1, (VIII) = 1.

(b) For each character before the first #, we consider the following two cases.

• If the corresponding mask bit is 1, then the TM takes approximately 2n steps to process the
character:

– n/2 steps for checking the mask bit,

– n/2 steps for writing the character to the answer part, and

– n steps for moving the head to the next processed character.

• If the corresponding mask bit is 0, then the TM takes approximately n steps to process the
character:

– n/2 steps for checking the mask bit, and

– n/2 steps for moving the head to the next processed character.

By combining the above cases, since there are n/2 characters that need to be processed, the time
complexity is

n

2
·O(n) = O(n2).

(c) Please see the following diagram.

q0 q1 q2 q3

q4qa

{
→ R

⊔ → #, S

{
→ L

→ L

{
→ R

{a, b,⊔,#} → S

{
→ R

{a, b,⊔,#} → S{
{a, b,⊔} → S

→ S

{
a → R

⊔ → a,R
,

{
b → R

⊔ → b, R

{
{1, 2} → R

→ S

{
0 → L

{a, b} → ⊔, L
,{

1 → L

{a, b} → L

{
{0, 1} → R

{a, b,⊔} → S

{
⊔ → S

⊔ → R
,

{
⊔ → a,R

a → R
,{

⊔ → b, R

b → R

8

Explanation of states:

• q0: Copy the first part of the string (i.e., the part before the first #) from tape 1 to tape 2.

• q1: Move the head of the first tape to the position of the second #.

• q2: Scan the mask string from right to left. During the scan, apply the mask to the correspond-
ing characters on the second tape. If the mask bit is 1, keep the character; otherwise, replace
the character with ⊔.

• q3: Move the head of the first tape to the answer part (i.e., the part after the second #).

• q4: Write the unmasked characters from the second tape to the first tape. The heads of the
two tapes move from left to right.

(d) Here is the simulation:

→ q0 a b # 0 1 # ⊔
q0 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ → a q0 b # 0 1 # ⊔

a q0 b ⊔ ⊔ ⊔ ⊔ ⊔ → a b q0 # 0 1 # ⊔
a b q0 ⊔ ⊔ ⊔ ⊔ ⊔

→ a b # q1 0 1 # ⊔
a b q1 # ⊔ ⊔ ⊔ ⊔ → a b # 0 q1 1 # ⊔

a b q1 # ⊔ ⊔ ⊔ ⊔ → a b # 0 1 q1 # ⊔
a b q1 # ⊔ ⊔ ⊔ ⊔

→ a b # 0 q2 1 # ⊔
a q2 b # ⊔ ⊔ ⊔ ⊔ → a b # q2 0 1 # ⊔

q2 a b # ⊔ ⊔ ⊔ ⊔ → a b q2 # 0 1 # ⊔
q2 ⊔ b # ⊔ ⊔ ⊔ ⊔

→ a b # q3 0 1 # ⊔
q3 ⊔ b # ⊔ ⊔ ⊔ ⊔ → a b # 0 q3 1 # ⊔

q3 ⊔ b # ⊔ ⊔ ⊔ ⊔ → a b # 0 1 q3 # ⊔
q3 ⊔ b # ⊔ ⊔ ⊔ ⊔

→ a b # 0 1 # q4 ⊔
q4 ⊔ b # ⊔ ⊔ ⊔ ⊔ → a b # 0 1 # q4 ⊔

⊔ q4 b # ⊔ ⊔ ⊔ ⊔ → a b # 0 1 # b q5
⊔ b q5 # ⊔ ⊔ ⊔ ⊔

→ a b # 0 1 # b q5
⊔ b q5 # ⊔ ⊔ ⊔ ⊔

(e) Let the input string have length n. The following shows the time complexity of each step.

Step 1: This step requires n/2 steps.

Step 2: This step requires n/2 steps.

Step 3: This step requires n/2 steps.

Step 4: This step requires n/2 steps.

Step 5: This step requires n/2 steps.

Therefore, the time complexity of this two-tape Turing machine is

O

(
5n

2

)
= O(n).

Problem 4 (20 pts). In this problem, we want to find out whether the substring “CSIE” is in the tape
string. For example,

“I am a student in CSIE. The courses are great.”

includes the substring “CSIE.” For an opposite example,

“I am a CS student. I sometimes use the IE browser.”

does not include the substring “CSIE.”

9

(a) (10 pts) Please design a nondeterministic Turing machine (NTM), where

• Θ is the vocabulary pool we use in the tape string,

• Σ = Θ,

• Γ = Θ ∪ {⊔},
• ≤ 5 nodes (reject state is excluded).

Please give the explanation for your diagram.

(b) (5 pts) Now consider
L = {D | D contains the substring “CSIE”}.

To show that L ∈ NP, please design a polynomial-time verifier V for L with the certificate

c = the string index i.

Analyze your algorithm at each step and further show the time complexity on a TM. Note that your
verifier algorithm must include clear, step-by-step, and high-level descriptions.

(c) (5 pts) Show that L ∈ NP again by designing an NTM that uses the verifier V in (b) as a subroutine.

Solution.

(a) Please see the following diagram.

q0 q1 q2 q3 qa
C → R S → R I → R E → R

Γ → R

Explanation of states:

• q0: Nondeterministically guess whether it is the start of the substring “CSIE.”

• q1 ∼ q3: Check whether the following characters corresponding “S,” “I,” and “E.”

(b) Here is the algorithm:

Step1: Check whether i ≤ (|D| − 3), where |D| is the length of D. Obtaining |D| requires a single
pass over the input string, which takes O(n).

Step2: Move the head to the i-th position of D, and check whether D[i] = “C,” D[i+1] = “S,”
D[i+2] = “I,” and D[i+3] = “E,” which requires O(n).

Therefore, this algorithm requires O(n + n) time to verify the certificate c, which implies that
L ∈ NP.

(c) We can nondeterministically pick the index i

i ∈ {1, 2, . . . , (|D| − 3)},

with the polynomial-time verifier V we defined in (b). Thus L ∈ NP.

10

