Introduction to the Theory of Computation 2025 — Final

Solutions

Problem 1 (10 pts). Please prove that the language

Apra = {(B,w) | B=(Q,X%,9,q, F) is a DFA that accepts w} is decidable.
Note that you can give a high-level description of a Turing machine instead of explicitly constructing it.
Solution.

Step 1: Put the encoding (B, w) on the input tape, where B = (Q, %, §, qo, F).
Step 2: Check whether w € ¥* and whether B is a valid DFA. If not, reject.
Step 3: Simulate the DFA B on input the string w according to the transition function 4.

Step 4: After processing the last symbol of w, check whether the current state is a final state. If it is,
accept; otherwise, reject.

Problem 2 (30 pts). Assume f and g are functions f, g : N — R*. Prove or disprove the sub-problems
by using the following definitions.

Definition 1. We say
f(n) = 0O(g(n))

if there exists ¢ > 0 and ny € N such that for every integer n > ng, f(n) < cg(n).

Definition 2. We say
f(n) = o(g(n))

if for each ¢ > 0, there exists ng € N such that for every integer n > ng, f(n) < cg(n).

To prove the statements, you must give the specific ng for one c or all ¢’s, depending on the definition
of big-O or small-o. To disprove the statements, you must prove the opposite of the definition in detail.
Note that we use the natural logorithm in this problem, i.e.,

logn = log,n.

(a) (5 pts) Let 1
f(n) =nmwen and g(n) = 1.

Prove or disprove that f(n) = O(g(n)).



(b) (5 pts) Please show that for every integer n > 2, we have

n 3n 1
Zlog<z> > gnlogn. (1)

(c) (5 pts) Let
f(n) =log(n!) and g(n) = nlogn.

Prove or disprove that f(n) = o(g(n)). Hint: You may need to use (1) in your proof, and think
about the relation between

3

log k and Z log k.
k=1 k=|3n/4]

(d) (5 pts) Let

Prove or disprove that 27" = O(29M).

(e) (5 pts) We define
f(n) = fi(n) + fa(n),
where
fi(n) = o(g(n)), and fa(n) = o(g(n)).
Please prove that
f(n) = o(g(n))

with Definition 2. Note that proving with the limit would not receive any points.

(f) (5 pts) Let
f(n) =e¥™ + n and g(n) = 5V".

Prove or disprove that f(n) = o(g(n)). Hint: The inequality logn < y/n might be useful.

Solution.

(a) To show that there exist ¢ > 0 and ny € N such that for every integer n > ny,

f(n) < cg(n).

We can take logarithms on both sides to derive

1
log f(n) <log(cg(n)) = log logn <loge = 1 <logec.
By taking
c=3 and ng =1,
we obtain

log f(n) =1 <log(3) =log(3-g(n)), Yn > ny,
which shows that f(n) = O(g(n)).



(b) To show that for every n > 2,

This inequality is equivalent to

3n 3n\ > In
21 — | = — =— > 1.
og(4>>ogn (4)>n "

(¢) The opposite of Definition 2 is
For some ¢ > 0 such that for any ny € N, there exists n > ng so that we have f(n) > cg(n).

By combining (1) with the definition of f(n), we can derive that

n

- 3 1
log(n!) = Zlogk > Z logk > %log(zn) > gnlog n, for every integer n > 2.
k=1 k=|3n/4]

Let us take

ol =

Then, we can prove that for every n > 2,

1
f(n) =log(nl) > 2g(n) = cg(n),
and which implies that
for any ng € N, there exists n > ng such that f(n) > cg(n).

Thus the statement is disproved.

(d) The opposite of
9f(n) — O(Qg(n))

is
for all ¢ > 0 and ng € N, there exists an n > ng such that 2/ () > 99(n)

Let us take f(n) = 2n and g(n) = n, such that f(n) and g(n) satisfy f(n) = O(g(n)). Thus, for
any ¢ > 0 and nyg € N, we can pick n > max{c, ng} such that

20 = on —gm — 2" > c.
Therefore, the statement is disproved.
(e) Consider any real number ¢ > 0. Let .
a=c =g

By Definition 2, we can find ny,ns € N such that

fi(n) < ci1g(n) for every integer n > ny



and
fa(n) < cog(n) for every integer n > na.

If we take
nog = max(ny, na),

then for every integer n > ng, we can see that

J(n) = iln) + () < Sg(n) + Sg(n) = cq(n).

Therefore, f(n) = o(g(n)).

We utilize the property established in Problem 2 (e) to show that f(n) = o(g(n)). First, let
filn) = eY™ and fy(n) = 7n.

For any real number ¢ > 0, we determine n; and n, by the following two inequalities

eV < .5V (2)

and
m<c- 5‘/5, (3)

respectively. From inequality (2), we can derive
eV <c- 5V

=+/n <logc++/nlogh
=+/n(1 —logh) < logc.

Since we use the natural log in this problem, it is clear that 1 —log5 < 0. Consequently, we obtain

Vvn(l —logh) <logc

such that

holds for all integers n > nj;.

From the inequality (3), we obtain

Tn <c-5V"
=log 7 +logn < logc+ v/nlogh
=log 7+ logn — v/nlogh < logec. (5)



Furthermore, by utilizing the hint, we have

log 7 +logn — v/nlogh < log 7 + v/n — v/nlog. (6)
The combination of inequalities (5) and (6) implies that we can use the following inequality
log 7+ v/n — v/nlogh < logec (7)

to determine a suitable ny. From the inequality (7), we can further derive
log 7+ v/n — v/nlogh < logec
=+/n(1 —logh) < logc—log7

> logc — log 7
1 —logh

logc —log 7 2
> — .
on = ( 1 —logb ) (®)

The inequality (8) implies that we can choose
logc —log 7 2
ny = max —_ .1
1 —logh

fa(n) < cg(n)

holds for all integers n > ns. Since we have already shown that

fi(n) = o(g(n)) and f, = o(g(n)),
the property proven in Problem 2 (e) directly yields f(n) = o(g(n)).

such that

Problem 3 (40 pts). In Midterm 2, you learned how to design a TM for the task “string masking.” For
example, at the beginning of the TM, we have the tape

a baab # 01 010 # U -,

which represents that we have the input string

abaab
and the mask
01010
After the masking, i.e.,
a b a a b b
01010 "
we should add the result at the end of the tape as
# o # b oa U

Note that we assume the input tape must be

{a,0}"#{0,1}"#.

Moreover, the input and the mask strings already have the same length (i.e., no need to check this).

5



(a) (10 pts) As the solution, we have the TM

=0
qo qa

a— U R b— U R
U— R
{ab#.U) > R {a,b}%LCCQD @ {ab#.U) = R
# — L
1—-UR 0— L, 0— U, L 1= U R
o SR O
U— L
{a,0,0,1,#} - R {a,0,0,1,#} - R
U—a,L U—b,L
qs

{a,b,#,0,1} — L

Please derive the steps that the TM uses on the input
aba# 10141

and complete the parts (I)--- (VIII) of the following table. Note that the 1st round and the 2nd
round handle the underlined bits of

aba#101# U and U ba# L 014#all, respectively.

terms 1st round # step(s) | 2nd round # step(s)
Qo — @1 Or qo — @2 | Lg1ba#£101#40 1 Ll U goa# L O1#all 1
g1 — q1 Or q2 — o | Uba#q 10140 (I) U U a#t U q201#all (VI)
q1 — q3 Or qo — q4 | Lba# LI q301#40 1 0
g3 — q3 or q4 — q4 | Uba#t LI 01#qsU (I1) 0
Gz — @5 Or q4 — q5 | Uba# L 01gs#all 1 0
qs — qs Lba#qs LI 01#all (III) 0
45 — Q6 Ubags# U 01#alJ 1 0
g1 — Qg O Qo — (¢ L U aftqgg U L1#ald 1
g6 — G Libage# LI 01#all (IV) U U age# U LI1#all (VII)
g6 — qr Lbgza# U 01#all 1 |UUgra#t UUL#al  (VII)
g7 — q7 g7 U ba#t L 01#all (V) Ug7 U a# U Ul#all 1
g1 — o Ugoba# U 01#all 1| UUgoad#t U LUT#al 1
o = qa 0 0




You can directly write your answers of (I)--- (VIII) without any explanation.

(b) (5 pts) Please show the time complexity of this single-tape Turing machine in big-O notation with
respect to the input string length n.

(c) (15 pts) Please follow the steps to design a two-tape TM:

Step 1: Copy the first part of the string (i.e., the part before the first #) into the 2nd tape.
Step 2: Move the head of the 1st tape to the position of the second #.

Step 3: Scan the mask string from right to left. During the scan, we apply the mask to the corre-
sponding character in the 2nd tape. If the mask bit is 1, we keep the character. Otherwise,
we modify the character to L.

Step 4: Move the head of the 1st tape to the answer part (i.e., the part after the second #).
Step 5: Write unmasked characters from the 2nd tape to the 1st tape. The head of the two tapes
should move from left to right.

Note that your two-tape TM must satisty the following conditions.

o Y= {#7a'7ba071}7
o '=XU{u},

no more than 6 states are used (the reject state is excluded),

the head can move left, move right, or stay in a two-tape TM, and

do not modify any input string before the second # in the 1st tape.

Please give the explanation for your diagram. To simplify the diagram, you can utilize

O

{{0,1}—>L

{a,b,U} — 8 O

to represent

rz— L

O b

(d) (5 pts) Please simulate your two-tape TM in (c¢) with the input

Vo € {0,1},Vy € {a,b,U}

ab#014 L - - .

(e) (5 pts) Please show the time complexity of your two-tape TM in big-O notation with respect to the
input string length n.

Solution.



(a) After directly simulating the input string, we know that

(I)=3, 1) =3, (Il) =3, (IV) =0, (V) =2, (V) =3, (VII) =1, (VIII) =

(b) For each character before the first #, we consider the following two cases.
e If the corresponding mask bit is 1, then the TM takes approximately 2n steps to process the
character:

— n/2 steps for checking the mask bit,
— n/2 steps for writing the character to the answer part, and
— n steps for moving the head to the next processed character.

e [f the corresponding mask bit is 0, then the TM takes approximately n steps to process the
character:

— n/2 steps for checking the mask bit, and
— n/2 steps for moving the head to the next processed character.

By combining the above cases, since there are n/2 characters that need to be processed, the time
complexity is

(c) Please see the following diagram.

0—L

{a,b} - U, L
{{12}—>R {1—>L {{01}%1%
#— S {a,b} = L {a,0,U} —» S

#—>R # — L # = R
|_|—>#S % #— L {a,b,U, #} — S
—{ 4 q q q
0 N N N

a— R b—)R # R
U—a R |_|—>bR {a,b,U,#} = S




Explanation of states:

e ¢o: Copy the first part of the string (i.e., the part before the first #) from tape 1 to tape 2.
e ¢1: Move the head of the first tape to the position of the second #.

® (9: Scan the mask string from right to left. During the scan, apply the mask to the correspond-
ing characters on the second tape. If the mask bit is 1, keep the character; otherwise, replace

the character with L.

e ¢3: Move the head of the first tape to the answer part (i.e., the part after the second #).

e (.. Write the unmasked characters from the second tape to the first tape. The heads of the
two tapes move from left to right.

(d) Here is the simulation:

Lo a b # 0 1 # U a q
Qo U U U U U Uy a qo
a b # ¢q 0 1 # U a b

b g # U U U U " a b
a b # 0 q 1 # U a b

“a e b # U U U |_|_>q2 a
a b # ¢ 0 1 # U a b

T U b # U U U U g U
a b # 0 1 # q U a b

T U b # U U U U g

N b # 0 1 # b g5
U b g # U U U U

b # 0 1#|_|_>abqo#0
b U U U u u a b g U U
0 ¢ 1 #I_J_)ab# 0 1
# U U U U "ab g # U
# ¢ 0 1 #U_>a b ¢ #
b # U U U U g U b #
# 0 ¢ 1#|—J_>a b # 0
b # U U U U g U b #
#O 1#(]4 |_|_>6Lb#0
b # U U U U "Ub g #

1 # U
Lo oy

G # U

U o u

0 1 # U

[ A
1 g3 # U
[ O O
1 # b g

[ R B A

(e) Let the input string have length n. The following shows the time complexity of each step.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

This step requires n/2 steps.
This step requires n/2 steps.
This step requires n/2 steps.
This step requires n/2 steps.
This step requires n/2 steps.

Therefore, the time complexity of this two-tape Turing machine is

g

5n

;)

O(n).

Problem 4 (20 pts). In this problem, we want to find out whether the substring “CSIE” is in the tape

string. For e

xample,

“I am a student in CSIE. The courses are great.”

includes the substring “CSIE.” For an opposite example,

“I am a CS student. I sometimes use the IE browser.”

does not include the substring “CSIE.”



(a) (10 pts) Please design a nondeterministic Turing machine (NTM), where

e O is the vocabulary pool we use in the tape string,
e Y =0,
o '=0U{U},

e < 5 nodes (reject state is excluded).
Please give the explanation for your diagram.

(b) (5 pts) Now consider
L ={D | D contains the substring “CSIE”}.

To show that L € NP, please design a polynomial-time verifier V' for L with the certificate
¢ = the string index 1.

Analyze your algorithm at each step and further show the time complexity on a TM. Note that your
verifier algorithm must include clear, step-by-step, and high-level descriptions.

(c) (5 pts) Show that L € NP again by designing an NTM that uses the verifier V' in (b) as a subroutine.

Solution.

(a) Please see the following diagram.

Explanation of states:

e ¢o: Nondeterministically guess whether it is the start of the substring “CSIE.”

e ¢, ~ q3: Check whether the following characters corresponding “S,” “I,” and “E.”
(b) Here is the algorithm:

Stepl: Check whether i < (|D| — 3), where |D] is the length of D. Obtaining |D| requires a single
pass over the input string, which takes O(n).

Step2: Move the head to the i-th position of D, and check whether Dy = “C,” Dpyq = “S)7
Diiyoy = “1.” and Dp4g) = “E,” which requires O(n).

Therefore, this algorithm requires O(n + n) time to verify the certificate ¢, which implies that
L € NP.

(c) We can nondeterministically pick the index i
i€{l,2,...,(|D] —3)},

with the polynomial-time verifier V' we defined in (b). Thus L € NP.

10



