|
E, ga Undecidable |

@ We have seen that
Atm undecidable

ALga decidable
@ However,

Eiga = {{M) | M is an LBA where L(M) = (0}

is undecidable
@ We do the proof by the computation history method

@ |dea: the question of M accepts w can be solved by
checking if L(B) = (), where B is an LBA

. TN G A ALy

|
E, ga Undecidable |l

@ Then because we assume E|gp is decidable, we have
a decider for Atm

@ The design of B: B recognizes all accepting

computation histories for M on w
M accepts w = L(B) # ()
M rejects w = L(B) = ()

@ We see that the machine is designed according to
the given w. This strategy has been used in earlier
examples

@ Details of B: on any input x, we check if x is an
accepting computation history for M on w

. T E—

|
E, gan Undecidable Il

e Specifically, we check if x is

(NS NS L NS (1)
G G G
and (i,..., C satisfy that

C; is the start configuration,
C, is an accepting configuration, and
C; follows from C;_;

@ The machine looks like

. T E—

|
E, ga Undecidable IV

CPU
1
e |FE x| @3 |a|b|F|x|x |5 |b|F]| -

@ To begin, we check if the input x is in the form of
(1)

@ Next, (7 is gow, so checking the first condition is
easy

@ For the third condition, we scan if C; contains gaccept

@ Now C; and C; 1 are the same except around the
head position

. p— T E—

|
E, gan Undecidable V

@ To compare C; and (1, the TM zigzags between
them

@ The setting looks good, but remember that B is an
LBA

@ The above discussion seems to show that our
operations never go beyond |x|

@ On the other hand, if you think extra space is
needed, it is fine as long as the space needed is
bounded by a constant factor of the length of

G # Gt

. T E—E

|
E, ga Undecidable VI

@ For example, if we copy C; and C;,; to the end for
the comparison, the extra space needed is no more

than [#C# - - #C#|

@ Thus for input x we can check if the first half is
A #CH

@ Then the machine never goes beyond |x|. Further, if
M accepts w, then at least one x is accepted by B

. T G A G

N
ALLcrc Undecidable |

@ Earlier we proved that
ECFG = {<G> | G : CFG, L(G) - @}

is decidable
@ Now we show a related problem is undecidable

ALLCFG = {<G> | G: CFG, L(G) = Z*}

@ It checks if G generates all possible strings
@ The proof is still by contradiction

We assume ALLcrg is decidable
— January 16,208 7/13

N
ALLcrc Undecidable |l

@ ldea: consider a CFG G such that
G generates " < M does not accept w

@ This is equivalent to

G generates L* if M does not accept w
G fails on some strings if M accepts w

@ If we have a decider on G, then we have a decider
on ATM

o If M accepts w, we let G fail to generate
. v G

N
ALLcgc Undecidable Il

an accepting computation history for M on w
@ That is, for G, the input cannot be

G G G
where (i, ..., C satisfy that

C; is the start configuration,
C, is an accepting configuration, and
C; follows from C;_;

@ Therefore, G generates all strings
@ that do not start with (7,
— January 16,203 0/13

N
ALLcrc Undecidable IV

© that do not end with an accepting

configuration, or
@ (; does not yield Cji4

@ Note that it's “or” because the opposite of

Aand B and C

—-Aor =B or -C

@ On the other hand, if M does not accept w, no
accepting computation history exists

. TR

N
ALLcrc Undecidable V

Then G generates all strings
@ But how to construct such a CFG?
@ Let's generate an equivalent PDA

@ The PDA nondeterministically checks three
branches for the three requirements

@ For example, the first branch checks if the beginning
of the input is C; and accepts if it is not

@ The third branch is more complicated
@ It accepts if C; does not properly yields C;
@ We can push C; to stack (# allows us to extract C;)

. TRy

N
ALLcrc Undecidable VI

@ We pop the stack to compare C; and Cj 4
@ They are the same except around the head position

@ A problem is that when we pop C;, it is in the
reverse order

@ To enable the comparison, we write the accepting
computation history differently

[P NS N A% NS AL NS
G CR G CR G

@ By this way, when we pop CF, we get C, and can
do the comparison
. e R

N
ALLcrc Undecidable VII

@ This means that for any input x, if it is in the form
of #Ci# - - - #C#, we “treat” the second segment
as CF in designing operations

. TR

