
Some languages not Turing-recognizable I

Σ∗ is countable

Simply count w with |w | = 0, 1, 2, 3, . . .

For example, if Σ = {0, 1}, then

{ϵ, 0, 1, 00, 01, 10, 11, . . .}

The set of TMs is countable

Each machine can be represented as a finite string
(think about the formal definition)

Thus the set of TMs is a subset of {0, 1}∗

Let
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Some languages not Turing-recognizable II

L: all languages over Σ
B : all infinite binary sequences

For any
A ∈ L

there is a corresponding element in B

Example:

A : 0{0, 1}∗

Σ∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, . . .}
A = {0, 00, 01, 000, 001, . . .}
χA = 010110011 . . .
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Some languages not Turing-recognizable
III

One-to-one correspondence between B and L

B is uncountable (like real numbers)

Therefore, L is uncountable

Each TM ⇒ handles one language in L

Set of TM is countable, but L is not

Thus some languages cannot be handled by TM
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Halting problem undecidable I

Recall the halting problem is

ATM = {⟨M ,w⟩ | M : TM, accepts w}

We prove it is undecidable by contradiction

Assume there is an H that is a decider for ATM

Then H satisfies

H(⟨M ,w⟩) =

{
accept if M accepts w

reject otherwise

Construct a new TM D with H as a subroutine
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Halting problem undecidable II

For D, the input is ⟨M⟩, where M is a TM

It runs H on ⟨M , ⟨M⟩⟩ and outputs the opposite
result of H

The machine D satisfies

D(⟨M⟩) =

{
accept if M rejects ⟨M⟩
reject if M accepts ⟨M⟩

But we get a contradiction

D(⟨D⟩) =

{
accept if D rejects ⟨D⟩
reject if D accepts ⟨D⟩
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Halting problem undecidable III

We said earlier that the diagonalization method is
used for the proof. Is that the case?

We show that indeed it is used
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Diagonalization in the proof I

Set of TMs is countable so we can have
⟨M1⟩ ⟨M2⟩ ⟨M3⟩

M1 A A
M2 A A A
...

blank entries: unknown if reject or loop

But H knows the solution as it is a decider
⟨M1⟩ ⟨M2⟩ ⟨M3⟩

M1 A R A
M2 A A A
...
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Diagonalization in the proof II

D outputs opposite of diagonal entries

⟨M1⟩ ⟨M2⟩ . . . ⟨D⟩
M1 R
M2 R

. . .
D ?
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co-Turing-recognizable Language I

Definition: a language is co-Turing-recognizable if
its complement is Turing-recognizable

Theorem 4.22

Decidable ⇔ Turing-recognizable and
co-Turing-recognizable

Why not

Turing-recognizable

⇒ complement Turing-recognizable

Note that “recognizable” means any
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co-Turing-recognizable Language II

w ∈ language

is accepted by the machine in a finite number of
steps

That is, no infinite loop

Example:

ATM Turing-recognizable but not decidable

w ∈ ATM

⇒ reject or loop

Thus ATM may not be Turing-recognizable
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co-Turing-recognizable Language III

What if we swap qaccept , qreject?

If

a /∈ A and loop occurs

then

a ∈ A, but TM still loops

We cannot reach the new qaccept state

Proof of Theorem 4.22

“⇒”

Decidable ⇒ Turing-recognizable

Complement ⇒ decidable ⇒ Turing-recognizable
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co-Turing-recognizable Language IV

“⇐” Now A,A are Turing-recognizable by two
machines M1,M2

Construct a new machine M : for any input w
1 Run M1,M2 in parallel
2 M1 accept ⇒ accept, M2 accept ⇒ reject

Never infinity loop

M accepts all strings in A, reject all not in A

Thus A is decidable with a decider M
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