
Introduction to the Theory of Computation 2024 — Midterm 2

Solutions

Problem 1 (30 pts). Consider the CFG (V,Σ, R, S) with

V = {S,B, J} and Σ = {b, j},

where the rule set R contains the following rules:

S → B | BJ
B → BB | b | ε
J → jJb | j | ε

(1)

(a) (5 pts) Please provide leftmost derivations for the input strings

jjb and bbbb

by using CFG (1). What you need to give is a sequence of derivations. No need to draw a tree.

(b) (5 pts) Is the string
j

derived ambiguously in CFG (1)? Please provide your reasons for determining ambiguity in CFG (1).

(c) (10 pts) Convert CFG (1) to CNF by the following steps:

(i) Add a new start state.

(ii) Remove X → ε with the order
B → ε, J → ε, S → ε,

for any variable X that is not the start state.

(iii) Handle X → Y , for all variables X and Y . Please follow the order

J → J, J → B, J → S, B → J, B → B, B → S, S → J, S → B, S → S,

S0 → B, S0 → J, S0 → S.

(iv) Convert X → u1u2u3, where k ≥ 3 and each ui is a variable or terminal symbol.

(v) Replace any terminal ui in the preceding rules with U1 → j and U2 → b.

Please ensure that all intermediate steps are clearly documented, showing how CFG (1) is trans-
formed into CNF.

(d) (10 pts) Please convert CFG (1) to a PDA with the following draft

1

qs q$

qloopqa q2

q3

q4

by the procedure outlined in Lemma 2.21 of the textbook (in our slides chap2 PDA3.pdf). Please
note that we do not allow adding states.

Solution.

(a) We show the leftmost derivations of those strings on the following.

(i) jjb.
S → BJ → εJ → εjJb→ εjjb.

(ii) bbbb.
S → B → BB → BBB → BBBB → bBBB → bbBB → bbbB → bbbb.

(b) Since j can be derived by the following leftmost derivations

(i)
S → BJ → εJ → εj, and

(ii)
S → BJ → BBJ → εBJ → εεJ → εεj,

j is derived ambiguously in CFG (1)

(c) • Add S0 → S.

S0 → S

S → B | BJ
B → BB | b | ε
J → jJb | j | ε

• Remove B → ε

S0 → S

S → B | BJ | J | ε
B → BB | b | B
J → jJb | j | ε

2

• Remove J → ε

S0 → S

S → B | BJ | J | ε
B → BB | b | B
J → jJb | j | jb

• Remove S → ε

S0 → S | ε
S → B | BJ | J
B → BB | b | B
J → jJb | j | jb

• Remove B → B

S0 → S | ε
S → B | BJ | J
B → BB | b
J → jJb | j | jb

• Remove S → J

S0 → S | ε
S → B | BJ | jJb | j | jb
B → BB | b
J → jJb | j | jb

• Remove S → B

S0 → S | ε
S → BB | b | BJ | jJb | j | jb
B → BB | b
J → jJb | j | jb

• Remove S0 → S

S0 → BB | b | BJ | jJb | j | jb | ε
S → BB | b | BJ | jJb | j | jb
B → BB | b
J → jJb | j | jb

• Convert A→ u1u2 · · ·u3, where k ≥ 3.

S0 → BB | b | BJ | jA1 | j | jb | ε
S → BB | b | BJ | jA1 | j | jb
B → BB | b
J → jA1 | j | jb
A1 → Jb

3

• Convert remaining rules.

S0 → BB | b | BJ | U1A1 | j | U1U2 | ε
S → BB | b | BJ | U1A1 | j | U1U2

B → BB | b
J → U1A1 | j | U1U2

A1 → JU2

U1 → j

U2 → b

(d) Please see the following diagram.

qs q$

qloopqa q2

q3

q4

ε, ε→ $

ε, ε→ S

ε, $→ ε

ε, S → J
ε,B → B

ε, ε→ B

ε, J → b

ε, ε→ Jε, ε→ j

ε, S → B
ε,B → b
ε, B → ε
ε, J → j
ε, J → ε
b, b→ ε
j, j → ε

Problem 2 (10 pts). Consider the following language

{0m1n0n | m ≥ 0, n ≥ 0} (2)

We have a 5-state PDA

q1 q2 q3

q4q5

ε, ε→ $

0, ε→ ε

1, ε→ 1

ε, $→ ε

1, ε→ 1

0, 1→ ε

0, 1→ ε
ε, $→ ε

4

for the language (2) with Σ = {0, 1} and Γ = {1, $}.

(a) (5 pts) Please complete the following table of δ function.

0 1 ε
1 $ ε 1 $ ε 1 $ ε

q1
q2
q3
q4
q5

You do not need to write done ∅ and can leave these place emtpy.

(b) (5 pts) If we modify the PDA to a 6-state DPDA

q1 q2 q3

q4q5

ε, ε→ $

0, ε→ ε

1, ε→ 1

1, ε→ 1

0, 1→ ε

0, 1→ ε
ε, $→ ε

where the rejected state qr is not shown in the diagram for the readability. Please show the table of
δ function. You do not need to write done ∅ and can leave these place emtpy.

Solution.

(a) Please see the following table.

0 1 ε
1 $ ε 1 $ ε 1 $ ε

q1 {(q2, $)}
q2 {(q2, ε)} {(q3, 1)} {(q5, ε)}
q3 {(q4, ε)} {(q3, 1)}
q4 {(q4, ε)} {(q5, ε)}
q5

Empty slots have the value ∅.

(b) The δ function of this diagram is

0 1 ε
1 $ ε 1 $ ε 1 $ ε

q1 (q2, $)
q2 (q2, ε) (q3, 1)
q3 (q4, ε) (qr, ε) (q3, 1)
q4 (q4, ε) (qr, ε) (q5, ε)
q5 (qr, ε) (qr, ε) (qr, ε) (qr, ε)
qr (qr, ε) (qr, ε) (qr, ε) (qr, ε)

5

Empty slots have the value ∅.

Problem 3 (40 pts). Please consider the following PDA P with

• Q = {q1, q2, q3, q4, q5, q6, q7} is the set of states.

• Σ = {0, 1, 2} is the input alphabet.

• Γ = {$,∆1,∆2} is the stack alphabet.

q1 q2 q3 q4

q6 q5q7

ε, ε→ $

0, ε→ ∆1

0, ε→ ∆1 1,∆1 → ε

1,∆1 → ε1,∆1 → ε 1, ε→ ∆2

ε, ε→ ε

ε,∆2 → ε

2,∆2 → ε

ε, $→ ε

(a) (5 pts) Please follow page 5 of our slides in chap2 PDA2.pdf to simulate the given PDA P on the
input string 01112 by drawing the corresponding simulation trees. Then, determine whether the
PDA P accepts this input string based on your simulation.

(b) (10 pts) What is the language recognized by P? Please provide the details to explain your answer.

(c) (15 pts) Please identify and explain which of the following conditions mentioned in page 2 of
“chap PDA4.pdf” is not satisfied by PDA P .

• A single accept state.

• Stack should be empty before accepting.

• Each transition should either pushes or pops something from the stack, but not both at the
same time.

Next, please convert PDA P to P ′ so that it satisfies all three conditions mentioned above. Please
note that your Σ, Γ and Q must be the same. You are allowed only to change δ (i.e., the links
between nodes). You need to provide reasons for your changes.

Hint: See if you can remove one link and add another one so that the language is the same.

Additionally, to confirm that your P ′ recognizes same language as in (b), you need to do (a) again
with your P ′. Please draw the corresponding simulation trees and determine whether the P ′ accepts
the input string 01112.

(d) (10 pts) Based on (c), convert P ′ to a CFG by using the procedure in Lemma 2.27 of the textbook.
For simplicity, you only need to write each Apq → aArsb rule. The rules Apq → AprArq and App → ε
are not needed. In order to prepare for Apq → aArsb rules, please give table(s) for each stack
alphabet t pushed/popped, similar to what we had in slides.

6

Solution.

(a) For input string 01112

q1∅ q2{$}

q2{∆1, $} q3{∆1, $}

q3{$} q4{$}

q4{∆2, $}

q4{∆2,∆2, $} q6{∆2,∆2, $}

q6{$} q7∅ q5{∆2, $}

q6{∆2, $}

q6{$} q7∅

0

1

1

1

2

This PDA accepts input string 01112.

(b) We observe that states q1, q2, and q3 push m ∆1 into the stack while reading 0s and then pop m ∆1

when reading 1’s. Moreover, since states q0 and q1 cannot reach q7 without reading 0’s, the language
cannot include ε. As a result, we can summarize that states q1, q2, and q3 handle the following
language:

{0m1m | m > 0}.

For the other states, we observe that the loop between q6 and q5 pops 2n ∆2 from the stack while
reading 2’s. Therefore, q4 must push 2n ∆2 into the stack while reading 1’s. Moreover, because
q4 can reach q7 by ε, the language includes ε. As a result, we can summarize that the other states
handle the following language

{12n2n | n ≥ 0}.

Since the first language will complete before handling the second language. Therefore, the PDA P
recognizes the following language

{0m1m+2n2n | m > 0, n ≥ 0}.

(c) The PDA P has an ε→ ε transition from q4 to q6, which violates the third needed condition. Thus,
we need to handle the transition q4 → q6. We know that in the original figure, q4, q5, q6 handle the
following language

{12n2n | n ≥ 0}.

Our strategy is to push 2n ∆2 into stack by 1’s, and then pop up 2n ∆2 by the loop between q6 and
q5 when reading 2’s. To construct PDA P ′, our new strategy is to push 2n + 1 ∆2 into stack and
immediately pop up one ∆2 via the path from q5 to q6. This ensures that the stack contains exactly
2n ∆2 before reading 2’s, allowing P ′ to pop up 2n ∆2 through same loop between q6 and q5.

7

q1 q2 q3 q4

q6 q5q7

ε, ε→ $

0, ε→ ∆1

0, ε→ ∆1 1,∆1 → ε

1,∆1 → ε1,∆1 → ε 1, ε→ ∆2

ε, ε→ ∆2

ε,∆2 → ε

2,∆2 → ε

ε, $→ ε

For input string 01112

q1∅ q2{$}

q2{∆1, $} q3{∆1, $}

q3{$} q4{$}

q4{∆2, $}

q4{∆2,∆2, $} q5{∆2,∆2,∆2, $} q6{∆2,∆2, $}

q6{$} q7∅ q5{∆2, $}

q5{∆2,∆2, $} q6{∆2, $}

q5{∆2, $} q6{$} q7∅

0

1

1

1

2

This PDA P ′ accepts input string 01112.

We also accept the following PDAs; however, we did not provide the reason and the corresponding
simulation trees.

Other solution I: Please consider the following PDA.

8

q1 q2 q3 q4

q6 q5q7

ε, ε→ $

0, ε→ ∆1

0, ε→ ∆1 1,∆1 → ε

1,∆1 → ε1,∆1 → ε 1, ε→ ∆2

1, ε→ ∆2ε, $→ ε

ε,∆2 → ε

2,∆2 → ε

ε, $→ ε

Other solution II: Please consider the following PDA.

q1 q2 q3 q4

q6 q5q7

ε, ε→ $

0, ε→ ∆1

0, ε→ ∆1 1,∆1 → ε

1,∆1 → ε1,∆1 → ε 1, ε→ ∆2

2,∆2 → ε

ε, $→ ε

ε,∆2 → ε

2,∆2 → ε

ε, $→ ε

(d) The corresponding CFG is the following:

• t = ∆1:

p r s q a b rules
2 2 3 3 0 1 A23 → 0A231
2 2 3 4 0 1 A24 → 0A231
2 3 3 3 0 1 A23 → 0A331
2 3 3 4 0 1 A24 → 0A331

• t = ∆2:

p r s q a b rules
4 4 5 6 1 ε A46 → 1A45

4 4 6 5 1 2 A45 → 1A462
4 5 5 6 ε ε A46 → A55

4 5 6 5 ε 2 A45 → A562

• t = $:
p r s q a b rules
1 2 6 7 ε ε A17 → A26

For other solutions, the corresponding CFGs are on the following.

Other solution I: The CFG which converting PDA (cI) is

9

• t = ∆1:

p r s q a b rules
2 2 3 3 0 1 A23 → 0A231
2 2 3 4 0 1 A24 → 0A231
2 3 3 3 0 1 A23 → 0A331
2 3 3 4 0 1 A24 → 0A331

• t = ∆2:

p r s q a b rules
4 4 5 6 1 ε A46 → 1A45

4 4 6 5 1 2 A45 → 1A462
4 6 5 6 1 ε A46 → 1A65

4 6 6 5 1 2 A45 → 1A662

• t = $:
p r s q a b rules
1 2 6 7 ε ε A17 → A26

1 2 4 7 ε ε A17 → A24

Other solution II: The CFG which converting PDA (cII) is

• t = ∆1:

p r s q a b rules
2 2 3 3 0 1 A23 → 0A231
2 2 3 4 0 1 A24 → 0A231
2 3 3 3 0 1 A23 → 0A331
2 3 3 4 0 1 A24 → 0A331

• t = ∆2:

p r s q a b rules
4 4 4 5 1 2 A45 → 1A442
4 4 5 6 1 ε A46 → 1A45

4 4 6 5 1 2 A45 → 1A462

• t = $:
p r s q a b rules
1 2 4 7 ε ε A17 → A24

1 2 6 7 ε ε A17 → A26

Problem 4 (20 pts). In this problem, you will design a TM for

mapping a non-negative binary number into an equivalent quaternary number.

Let x be a string representing a binary number

x = x1x2 · · · ,where xi ∈ {0, 1}.

We have the following table to describe the relationship between different numerical systems.

Decimal 0 1 2 3 4 5 6 7
Binary 0000 0001 0010 0011 0100 0101 0110 0111
Quaternary 00 01 02 03 10 11 12 13

When doing the mapping, you can group every 2-bits in the binary number to make the mapping
easier. For example, assume we have a number 213 in the decimal system, and the mapping can be
completed by

x = 11011000 = 11 01 10 00→ 3 1 2 0 = 3120.

10

(a) (15 pts) Now, let us constrain the input x to have even length (i.e., |x| mod 2 = 0,) and define the
output y as

y = y1y2 · · · ,where yi ∈ {0, 1, 2, 3}.

The TM has the following initial configuration

x# t · · · ,

and the final configuration
t · · · t︸ ︷︷ ︸

|x|

#y t · · · .

For example, if 11011000 is the input, we have

11011000# t · · ·

in the beginning. After we run the TM, the tape content should become

t · · · t︸ ︷︷ ︸
8

#3120 t · · · .

To achieve this conversion, we sequentially process every two bits. For every xixi+1, we calculate

2xi + xi+1

to get the corresponding y components.

Please follow the steps to design your TM:

Step 1: Process the bit xi and replace it with t.

Step 2: Move to the corresponding position of y in the right side of #, and store the value 2× xi.
Step 3: Move back to xi+1. Process the bit xi+1 and replace it with t.

Step 4: Move to the corresponding position of y in the right side of #, and change the value from
2xi to 2xi + xi+1.

Step 5: Move back to the current leftmost bit and repeat Step 1 until all bits in x have been read.

Note that your TM should satisfy

• Σ = {#, 0, 1},
• Γ = {#, 0, 1, 2, 3,t},
• No more than 9 states (the rejected states are excluded), and

• We only consider moving the head right or left in the Turing machine.

For the following links between two nodes

0→ R, 1→ R, 2→ R, 3→ R,#→ R,

you are allowed to use
Γ\{t}→ R

instead. We require you to complete the following diagram

11

q0

q1 q2

q3 q4 q5

q6

q7

qa

Γ\{t}→ R Γ\{t}→ R

Γ\{t}→ L Γ\{t}→ R

Γ\{t}→ L

All you need to do is add links to the states above. We allow x = ε, so

#

is accepted. Please draw the resultant diagram on the answer sheet and do not submit this page as
your answer.

(b) (5 pts) Please simulate your TM in (a) on the string

11#

Note that you need to show the entire simulation until your Turing Machine stops.

Solution.

(a) Please see the following diagram:

12

q0

q1 q2

q3 q4 q5

q6

q7

qa

0→ t, R

#→ R

1→ t, R

Γ\{t} → R Γ\{t} → R

t → 0, L t → 2, L

Γ\{t} → L

t → R 1→ t, R

Γ\{t} → R

t → L

0→ 1, L
2→ 3, L

Γ\{t} → L

t → R

0→ t, R

The meaning of each states:

{q0}: Step 1.

{q1, q2}: Step 2.

{q3}: Step 3. Move back to xi+1.

{q4}: Step 3. Process the bit xi+1 and replace it with t.

{q5, q6}: Step 4.

{q7}: Step 5.

(b) For the string “11#”, the simulation of the Turing machine is on the following.

q011# t t ⇒ tq21# t t ⇒ t1q2# t t ⇒ t1#q2 t t ⇒ t1q3#2t
⇒ tq31#2t ⇒ q3 t 1#2t ⇒ tq41#2t ⇒ t t q5#2t ⇒ t t#q52t
⇒ t t#2q5t ⇒ t t#q62t ⇒ t t q7#3t ⇒ tq7 t#3t ⇒ t t q0#3t
⇒ t t#qa3t

13

