
Introduction to the Theory of Computation 2024 — Midterm 1

Solutions

Problem 1 (5 pts). Let Σ = {0, 1}. Consider the following DFA

q0 q1

q2 q6 q3

q4 q5

0

1
0 1

1

0

1

0

1
0

1
00, 1

Please simulate the computation on the input strings 0111 and 00110. After drawing the paths,
determine whether this DFA accepts or rejects each input string. Illustrate the computation paths,
similar to the example provided (adapted from Figure 1.28 in the textbook).

qs

q1

q2

qa

1

0

1

Please follow the rules in the textbook.

Solution.
For the input string 00110

1

q0

q1

q0

q2

q4

q6

0

0

1

1

0

This DFA rejects the input string 00110.
For the input string 0111

q0

q1

q3

q5

q3

0

1

1

1

This DFA accepts the input string 0111.

Problem 2 (25 pts). Let Σ = {0, 1}. Consider the following NFA.

qs q1

q2 qa

ε

1

1

0

1

1

0
0

0

(a) (10 pts) Please draw the computation of this NFA on the input strings 101 and 010 and conclude
whether they are accepted or rejected. A computation is like the following figure (copied from
Figure 1.29 in the textbook, as an illustration and not related to the NFA in this subproblem.)

q1

q1

q1

q1 q2 q3

q2

q3

q3

from q2 via ε

0

1

0

2

Please follow the rules in the textbook. Note that we handle the ε edge immediately, and you
have to list all possible states that can be reached once processing each input character.

(b) (15 pts) Convert this NFA to a DFA by the procedure in our slides “chap1 NFA3.pdf” from page 3
to page 9 (Theorem 1.39 in the textbook.). We have provided the following diagram illustrating all
possible state combinations. Please provide the detail of the procedure. Use this diagram for your
conversion, then remove useless states and show only the resulting diagram on your answer sheet.

qs qa q1 q2∅

qs, q2qs, q1 qs, qa q1, q2 q1, qa q2, qa

qs, q1, q2 qs, q1, qa qs, q2, qa q1, q2, qa

qs, q1, q2, qa

Solution.

(a) For the input string 101:

qs

q2

qa

qs q2 q1

q2

q1

q1

qa

qs q2 q1

qs
1

0

1

This NFA rejects the input string 101.

For the input string 010:

qs q1

qa

qs q2

q2 qa

q1

qa

0

1

0

3

This NFA accepts the input string 010.

Common mistake: missing states from ε path.

(b) Step 1: We have the conbination of the states as

∅, {qs}, {q1}, {q2}, {qa}, {qs, q1}, {qs, q2}, {qs, qa}, {q1, q2}, {q1, qa}, {q2, qa},
{qs, q1, q2}, {qs, q1, qa}, {qs, q2, qa}, {q1, q2, qa}, {qs, q1, q2, qa}

Step 2: We now follow the procedure outlined in our slides “chap1 NFA3.pdf”:

i. Start state: {qs, q1}.
ii. Accept state: Any state that includes qa is considered an accept state.

iii. Below, we first demonstrate a few examples of the DFA’s transition function δ, followed
by the complete transition function:

qs qa q1 q2

∅

qs, q1 qs, q2 qs, qa

q2, qa q1, q2 q1, qa

qs, q1, q2 qs, q1, qa qs, q2, qa q1, q2, qa

qs, q1, q2, qa

0

1

0, 1

0

1 0

1

0

1

Its transition function δ is

4

0 1
∅ ∅ ∅
{qs} ∅ {q2}
{q1} {qa} {qs, q1}
{q2} {q2, qa} ∅
{qa} ∅ {qs, q1, q2}
{qs, q1} {qa} {qs, q1, q2}
{qs, q2} {q2, qa} {q2}
{qs, qa} ∅ {qs, q1, q2}
{q1, q2} {q2, qa} {q1, qs}
{q1, qa} {qa} {qs, q1, q2}
{q2, qa} {q2, qa} {qs, q1, q2}
{qs, q1, q2} {q2, qa} {qs, q1, q2}
{qs, q1, qa} {qa} {qs, q1, q2}
{qs, q2, qa} {q2, qa} {qs, q1, q2}
{q1, q2, qa} {q2, qa} {qs, q1, q2}
{qs, q2, q2, qa} {q2, qa} {qs, q1, q2}

Step 3: After we remove the unused states, we have

qs, q1 qa ∅

qs, q1, q2 q2, qa

0

1

0, 1

0

1

01

0

1

Common mistakes:

• Missing accept states or the start state.

• Wrong start state leads to wrong answer.

• Wrong path resulting in adding unreachable states.

• Empty states didn’t have 0, 1 path.

• Show the result is NFA, even epsilon.

• Lack of details of procedure.

• Didn’t remove unreachable states in the resulting diagram

Problem 3 (25 pts).

5

(a) (15 pts) Consider the alphabet Σ = {H, D, C}.
Construct an NFA for the regular expression

H (C ∪ D) (C ∪ D)∗

by the following steps:

(i) Give the NFA diagram for the following three regular expressions, each with a single alphabet.

R1 = H, R2 = C, and R3 = D.

(ii) Perform the union operation using the method from the slides “chap1 NFA4.pdf” on the NFAs
of R2 and R3 to construct the NFA diagram for the regular expression

R4 = R2 ∪R3 = C ∪ D.

(iii) Perform the star operation using the method from the slides “chap1 NFA4.pdf” on the NFA
of R4 to construct the NFA diagram for the regular expression

R5 = R∗
4 = (C ∪ D)∗.

(iv) Perform the concatenation operation using the method from the slides “chap1 NFA4.pdf” on
the NFAs of R1 and R4 to construct the NFA diagram for the regular expression

R6 = R1 ◦R4.

Then, do the concatenation operation again on the NFAs of R5 and R6 to construct the NFA
diagram for the regular expression

R7 = R6 ◦R5.

Please show all the NFAs of R1, R2, . . . , R7, and do NOT simplify the ε paths.

(b) (10 pts) Give the alphabet Σ = {H, W, B}. Convert the NFA

q0 q1 q2 q3 q4
H W

W W

B W

B

to an equivalent GNFA by the following steps:

(i) Add a new started state qs and an accepted state qa to create the initial state diagram Sinitial.

(ii) Remove the states q0, q1, . . . , q4 in numerical order during the conversion process to get the
final state diagram Sfinal.

Please show all the details of the conversion process from Sinitial to Sfinal.

Solution.

6

(a) Please see the following steps:

Step 1. NFA for R1

p0 p1
H

NFA for R2

p0 p1
C

NFA for R3

p0 p1
D

Step 2. NFA for R4

p0

p1 p2

p3 p4

ε

C

ε

D

Step 3. NFA for R5

p1p0

p2

p3

p4 p5
ε

ε

C

ε D

ε

ε

Step 4. NFA for R6

7

p2p1p0

p3 p4

p5 p6

H ε

ε

ε

C

D

Step 5. NFA for R7

p2p1p0

p3 p4

p5 p6

p7 p8

p9

p10

p11 p12

H ε

ε

ε

C

D

ε

ε
ε

ε

ε

C

D

ε

ε

Common mistakes:

• R5: Do not start with terminal state, epsilon edge.

• R6: (i) Do not have terminal state in the middle. (ii) Accidentally put R5 instead of
R4. (iii) Do not have a state and an epsilon edge in the middle.

• R7: (i) Draw two R6. (ii) Do not have a state and an epsilon edge in the middle.

(b) We have the following steps:

Step 1. Add new start qs and accept qa states.

q0 q1 q2 q3 q4qs qa
H W

W W

B W

B

ε ε

Step 2. Remove q0.

8

q1 q2 q3 q4qs qa
W

W W

B W

BH

H ε

Step 3. Remove q1.

q2 q3 q4qs qa

W W

B W

BHW

HW ε

Step 4. Remove q2.

q3 q4qs qa

W

W

BHWW∗B

HWW∗B ε

Step 5. Remove q3.

q4qs qa

W∪BHWW∗BW

HWW∗BW ε

Step 6. Remove q4.

qs qa
HWW∗BW(W∪BHWW∗BW)∗

Problem 4 (10 pts). Error-detecting code is a useful technique to check whether an error occurs
during the bits transmission. For example, if we have to transmit the bits

011,

we can add an even parity bit behind it

“transmitted target” ◦ “even parity bit” = 0110.

9

The even parity bit checks whether the number of 1 in the transmitted target is even or not. Here are
other examples to let you understand the even parity bit.

0110, 0101, 0000, 1111.

Therefore, if we get the bits
0001

after the transmission, we can quickly know that an error has occurred. Moreover, we say that 0001
does not pass the even parity check.

Now, let us add even parity bits in every 3 transmitted bits. For example, the transmitted target

000 010 111,

becomes to
000001011111

after adding even parity bits, where the bold numbers are the even parity bits. Please give a DFA with
less than or equal to 8 nodes to recognize the language

{w = {0, 1}∗ | w can pass the even parity check, and |w| mod 4 = 0.}

Please further explain the concept of your DFA.

Solution.
Please see the following diagram.

qa

E1

O1

E2

O2

E3

O3

qr

0

1

0

0

1

1

0

0

1

1 1

0

0

1

1,0

10

We check the odd-even status in previous k bits in the states

Ek and Ok,

for k = 1, 2, and 3. After that, if the even parity bit is correct, we return to the initial state for the
next round of checking. Otherwise, we go to the rejected state and stay there for the rest of the string.

Common mistakes:

• Accept wrong strings such as 0001 0000.

• The diagram is not DFA.

Problem 5 (35 pts). Are the following languages regular? If the language is regular, please give a
DFA to recognize it. If not, please use the pumping lemma to prove it is not regular. In using the
pumping lemma, your s and i must be clearly given. You cannot just roughly say the existence of them.
Moreover, you must give clear explanation instead of just giving the answer.

(a) (10 pts) Given the alphabet
Σ = {A,B},

we consider the languages
L1 = {w = {A,B}∗ | score(w) ≥ 0, }

where
score(w) = (number of A in w)− (number of B in w).

For example,
score(ABAAB) = 3− 2 = 1,

so
ABAAB ∈ L1.

(b) (10 pts) Given the alphabet
Σ = {0, 1},

we define the language
L2 = {poly(n) | n = 1, 2, 3, . . .},

where
poly(n) = 0n ◦ 10n−1 ◦ 10n−2 ◦ · · · ◦ 101.

For example, when n = 3,
poly(3) = 03 ◦ 102 ◦ 101 = 00010010.

(c) (15 pts) The language

L3 = {0m1n | m and n are positive integers, and share a common factor greater than 1.}

For example, when
m = 4 and n = 2,

4 and 2 share a common factor greater than 1. Therefore, the string

0412 = 000011 ∈ L3.

11

Solution.

(a) L1 is not regular. Let the pumping length p be given. We can take

s = BpAp ∈ L1

since
score(s) = 0.

Let s = xyz and
|xy| ≤ p, |y| > 0, (1)

for every x, y, z. Because (1), we know that

y = Bk,

where k is a positive integer. Hence, when we take any i ≥ 2,

score(xyiz) = score(xyz) + score(yi−1) = 0 + (−k)(i− 1) < 0.

Therefore,
xyiz /∈ L1.

By the pumping lemma, we show that L1 is not regular.

(b) L2 is not regular. Let the pumping length p > 0 be given. We can take

s = poly(p) = 0p ◦ 10p−1 ◦ 10p−2 ◦ · · · ◦ 101 ∈ L2,

and

|s| = p+ (p− 1) + · · ·+ 1︸ ︷︷ ︸
the number of 0s

+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
the number of 1s

=
p(p+ 1)

2
+ p− 1 ≥ p.

Let s = xyz and satisfy the condition (1) for every x, y, z. Because the first p characters of s can
only be 0,

y = 0k,

for some k such that
p ≥ k > 0.

Hence, we have
x = 0m, y = 0k, z = 0p−m−k ◦ 10p−1 ◦ 10p−2 ◦ · · · ◦ 101,

for some m ≥ 0, k > 0, and p−m− k ≥ 0. When we take i = 2,

xy2z =0m02k0p−m−k ◦ 10p−1 ◦ 10p−2 ◦ · · · ◦ 101

=0p+k ◦ 10p−1 ◦ 10p−2 ◦ · · · ◦ 101,

which is not in L2. By the pumping lemma, we show that L2 is not regular.

12

(c) L3 is not regular. Given a pumping length p, we take a prime number p̂ that is strictly greater than
p (i.e., p̂ > p ≥ 1). Because p̂ and p̂ have a common factor p̂ > 1, we can pick

s = 0p̂1p̂ ∈ L3.

Let s = xyz and satisfy the condition (1) for every x, y, z. Because p̂ > p, we have

y = 0k,

for some k such that
p ≥ k > 0.

When i = 0, we have
xy0z = 0p̂−k1p̂.

Because p̂ is a prime number, the common factor of

p̂− k and p̂

must be 1. Hence, xy0z /∈ L3. By the pumping lemma, we show that L3 is not regular.

13

