R
Small-o |

e Two different concepts:
O: no more than something
o: less than something

@ Definition
f(n) = o(g(n))
if f(n)

. T ——T

R
Small-o |l

@ The definition of this limit:

f(n)

Ve > 0,dng,Vn > ny, —= < ¢

g(n)

@ Note that we may instead write

f(n)
g(n)

<cC

but these two limit definitions are equivalent

R
Small-o |l

e O versus o:
dc > 0,3no, Vn > ng, f(n) < cg(n)
Ve > 0,3ng,Vn > ng, f(n) < cg(n)
The Vc causes o to be something smaller

e /n=o(n)
Vvn 1

im — = lim —= =0
n—oo N n—>oo\/ﬁ

. TN ——

N
Small-o IV

o f(n) # o(f(n))

|
Example: A = {0%1% | k > 0} |

@ Let's count the number of steps in the algorithm
discussed before

@ Check if the input is
0..01...1

This takes O(n)

e Move back: O(n)

@ Cross off each 0 and 1: O(n)
How many such crosses: n/2

n/2 x O(n) = O(n?)
] January 3, 2023 5/12

|
Example: A = {0%1X | k > 0} II

@ Accept or not?
O(n) to go through from beginning to end
e Total:

O(n) + O(n*) + O(n) = O(n?)

. e R

-
Time complexity class |

@ Definition:

TIME(t(n))
={L | L a language decided by an O(t(n)) TM}

@ We have
{0%1% | k > 0} € TIME(n?)

Can we make it faster?

. T ——

|
New Algorithm for A = {0K1% | kK > 0} |

@ The procedure: cross off every other 0 and 1
0000011111

key: length of the string left must be always even
o A failed algorithm
000011
001
@ Algorithm
— T

|
New Algorithm for A = {0¥1% | kK > 0} Il

©Q check 0..01...1
@ repeat if not empty
total # 0 & 1: odd = reject
cross off every other 0 and 1
© no 0 & 1 remain, accept

0 If13"0" =6 “0" =3 "0" =1"0"
1 + log, n iterations
@ Each iteration: O(n) operations

Note that length of tape contents is still n as we
only “mark” elements

e Total cost: O(nlogn)
e T

|
New Algorithm for A = {0K1% | kK > 0} IlI

@ Therefore
{0%1% | k > 0} € TIME(nlog n)

e Can we do better? no

@ Any language decided in o(nlog n) on a single-tape
TM = regular (not proved here)

e But we know that

{0%1% | k > 0}

IS not regular

. T T

|
New Algorithm for A = {0K1% | kK > 0} IV

e What if we copy the remained string to be after the
current string? It seems that we then have

n _n
—+—+---=0(n)7
n+2—|—4+ (n)

@ The problem is that the copy operation is expensive.
Copying n elements needs O(n?)

|
Using two-tape TM for {0%1% | k > 0} |

@ We can have an O(n) procedure
©Q check 0..01...1
@ copy 0 to the second tape
find the first 1
© sequentially cut 1 and 0
if no “0" reject
Q if “1" left, reject
otherwise, accept
@ Each step O(n)

. T —y T

