From past discussion, we know

decidable \rightarrow computationally solvable

However, this does not mean it is solvable in practice

The running time may be just too long
Example 1

- $A = \{0^k1^k \mid k \geq 0\}$

 What’s the number of steps by a 1-tape TM to process a string?

- Remember the procedure:
 1. check if input is 0^*1^*
 2. repeat until no 0 or 1
 scan, cross off single 0 and 1
 3. if 0 or 1 remains, reject
 otherwise, accept

- How much time?
 Need to count number of steps
Analysis I

- Worst-case analysis
 - Longest time (i.e., largest \# of steps) for all inputs
- Average-case analysis
- Usually it is easier to do worst-case analysis
- We use a function

\[f : N \rightarrow N \]

to represent the number of steps

- \(N \): natural number
- \(n \): length of input, \(f(n) \): number of steps
Big-O I

- A way to understand the running time of the algorithm when it is run on large inputs
- Consider

\[f(n) = 6n^3 + 5 \]

We have

\[n \to \infty, \quad 6n^3 + 5 \approx 6n^3 \]

\(O(f(n)) = O(n^3) \)

How about 6?

\[6n^3 \text{ vs. } n^3 \]
\[6n^3 \text{ vs. } n^4 \]
Only things involved with n are important

Definition:

$$f(n) = O(g(n))$$

if

$$\exists c, n_0, \forall n \geq n_0, f(n) \leq cg(n).$$
Consider

$$f(n) = 6n^3 + 5$$

We have

$$6n^3 + 5 \leq 7n^3 \text{ after } n \geq 2$$

That is, we choose

$$c = 7 \text{ and } n_0 = 2$$

Thus

$$f(n) = O(n^3)$$
Example II

- \(f(n) = O(n^4) \) as
 \[
 6n^3 + 5 \leq 7n^4, \text{ after } n \geq 2
 \]

- But \(f(n) \neq O(n^2) \)
 \[
 6n^3 + 5 \leq cn^2
 \]
 cannot always hold because we can choose large \(n \) such that
 \[
 n^3 > cn^2
 \]
Formally we have the following opposite statement of the definition:

\[\forall c, n_0, \exists n \geq n_0, f(n) > cg(n) \]
Example 7.4 I

- Consider

\[f(n) = 3n \log_2 n + 5n \log_2 \log_2 n \]

- We prove

\[f(n) = O(n \log n) \]

- Note that we write

\[\log n \] instead of \[\log_2 n \]

as we will show that the result holds for any base \(b \) for the log function
Example 7.4 II

Proof: From $n \leq 2^n, \forall n \geq 1,$ we have

$$\log_2 n \leq n$$

From this,

$$\log_2 \log_2 n \leq \log_2 n$$

Therefore

$$f(n) \leq 8n \log_2 n = 8n \log_2 b \log_b n, \forall n \geq 1$$
Example 7.4 III

by using

\[
\frac{\log_2 n}{\log_2 b} = \log_b n
\]
Other properties I

- We have

\[O(n^2) + O(n) = O(n^2) \]

- Formally,

\[f(n) = O(n^2), \ g(n) = O(n) \]
\[\Rightarrow f(n) + g(n) = O(n^2) \]
Proof

\[\exists c_1, n_1, \forall n \geq n_1, f(n) \leq c_1 n^2 \]
\[\exists c_2, n_2, \forall n \geq n_2, g(n) \leq c_2 n \]

Then

\[f(n) + g(n) \leq c_1 n^2 + c_2 n \leq (c_1 + c_2)n^2 \]

after \(n \geq \max(n_1, n_2) \)

Thus we choose

\[c = c_1 + c_2 \text{ and } n_0 = \max(n_1, n_2) \]
Definition:

\[f(n) = 2^{O(n)} \]

if \(\exists c, n_0 \) such that

\[f(n) \leq 2^{cn}, \forall n \geq n_0 \]

\[O(1): \exists c, n_0 \) such that

\[f(n) \leq c1, \forall n \geq n_0 \]

Thus

\[f(n) \leq \max\{f(1), \ldots, f(n_0 - 1), c\}, \forall n \]
That is,

\[f(n) \text{ always } \leq \text{ a constant} \]