
REGULARTM Undecidable I

For a given TM, we hope to check if there exists an
equivalent finite automaton

The problem can be formulated as follows

REGULARTM = {⟨M⟩ | M is a TM and

L(M) is a regular language}

As before, assume this language is decidable and
has a decider R

We construct a decider S for ATM as follows

December 29, 2022 1 / 6



REGULARTM Undecidable II

1 Design a TM M2 such that it recognizes{
a regular language if M accepts w

a non-regular language if M rejects w

(1)
2 Run R on input ⟨M2⟩
3 If R accepts, accept; if R rejects, reject

Then we have{
S accepts if M accepts w

S rejects if M rejects w

December 29, 2022 2 / 6



REGULARTM Undecidable III

Thus S is a decider for ATM, a contradiction

Now we give a specific design of M2 so that (1)
holds

We let M2 recognize{
Σ∗ if M accepts w

0n1n,∀n ≥ 0 if M rejects w

Note that Σ∗ is a regular language, but
0n1n,∀n ≥ 0 is not

The implementation is as follows

December 29, 2022 3 / 6



REGULARTM Undecidable IV

On input x :
1 If x has the form 0n1n, accept
2 If x does not have the form 0n1n, run M on

input w and accept if M accepts w

We see that if M accepts w , then any x ∈ Σ∗ is
accepted

On the other hand, if M does not accept w , only
0n1n,∀n ≥ 0 are accepted

December 29, 2022 4 / 6



EQTM Undecidable I

So far, our strategy for proving languages
undecidable involves a reduction from ATM

Sometimes reducing from some other undecidable
language is more convenient

Here we show an example by considering

EQTM = {⟨M1,M2⟩ | M1 and M2 are TMs and

L(M1) = L(M2)}

Assume EQTM is decidable and has a decider R

We construct a decider S for ETM as follows

December 29, 2022 5 / 6



EQTM Undecidable II

For input ⟨M⟩, where M is a TM:
1 Run R on input ⟨M ,M1⟩, where M1 is a TM

such that
L(M1) = ∅

2 If R accepts, accept; if R rejects, reject

For M1, we simply let it reject any input string.
Recall we learned how to design an NFA for ∅
But ETM is undecidable by an earlier proof. Thus
EQTM is undecidable

December 29, 2022 6 / 6


