For a given TM, we hope to check if there exists an equivalent finite automaton. The problem can be formulated as follows:

\[\text{REGULAR}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and} \]
\[L(M) \text{ is a regular language} \}\]

As before, assume this language is decidable and has a decider \(R \).

We construct a decider \(S \) for \(A_{\text{TM}} \) as follows.
Design a TM M_2 such that it recognizes

\[
\begin{align*}
\text{a regular language} & \quad \text{if } M \text{ accepts } w \\
\text{a non-regular language} & \quad \text{if } M \text{ rejects } w
\end{align*}
\]

(1)

Run R on input $\langle M_2 \rangle$

If R accepts, accept; if R rejects, reject

Then we have

\[
\begin{align*}
S \text{ accepts} & \quad \text{if } M \text{ accepts } w \\
S \text{ rejects} & \quad \text{if } M \text{ rejects } w
\end{align*}
\]
Thus S is a decider for A_{TM}, a contradiction

Now we give a specific design of M_2 so that (1) holds

We let M_2 recognize

$$
\begin{cases}
\Sigma^* & \text{if } M \text{ accepts } w \\
0^n1^n, \forall n \geq 0 & \text{if } M \text{ rejects } w
\end{cases}
$$

Note that Σ^* is a regular language, but $0^n1^n, \forall n \geq 0$ is not

The implementation is as follows
On input x:

1. If x has the form 0^n1^n, accept
2. If x does not have the form 0^n1^n, run M on input w and accept if M accepts w

- We see that if M accepts w, then any $x \in \Sigma^*$ is accepted
- On the other hand, if M does not accept w, only $0^n1^n, \forall n \geq 0$ are accepted
So far, our strategy for proving languages undecidable involves a reduction from A_{TM}.

Sometimes reducing from some other undecidable language is more convenient.

Here we show an example by considering

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Assume EQ_{TM} is decidable and has a decider R.

We construct a decider S for E_{TM} as follows.
For input $\langle M \rangle$, where M is a TM:

1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM such that

$$L(M_1) = \emptyset$$

2. If R accepts, accept; if R rejects, reject

For M_1, we simply let it reject any input string. Recall we learned how to design an NFA for \emptyset

But E_{TM} is undecidable by an earlier proof. Thus EQ_{TM} is undecidable