N
REGULARt\ Undecidable |

@ For a given TM, we hope to check if there exists an
equivalent finite automaton

@ The problem can be formulated as follows

REGULARtm = {(M) | Misa TM and
L(M) is a regular language}

@ As before, assume this language is decidable and
has a decider R

@ We construct a decider S for Aty as follows

. T

|
REGULARt\ Undecidable Il

@ Design a TM M, such that it recognizes

a non-regular language if M rejects w

(1)

{a regular language if M accepts w

@ Run R on input (Ms)
Q If R accepts, accept; if R rejects, reject

@ Then we have

S accepts if M accepts w
S rejects if M rejects w

. T

.
REGULART\ Undecidable [

@ Thus S is a decider for Atm, a contradiction

@ Now we give a specific design of M, so that (1)
holds

o We let M, recognize

2" if M accepts w
071" ¥n >0 if M rejects w
@ Note that X" is a regular language, but
0"1".¥n > 0 is not
@ The implementation is as follows

. s 5, 5

REGULARt\ Undecidable IV

On input x:
@ If x has the form 01", accept

@ If x does not have the form 0"1”, run M on
input w and accept if M accepts w

@ We see that if M accepts w, then any x € £* is
accepted

@ On the other hand, if M does not accept w, only
0"1",¥n > 0 are accepted

. s 5, 5

4/6

|
EQtm Undecidable |

@ So far, our strategy for proving languages
undecidable involves a reduction from Atm

@ Sometimes reducing from some other undecidable
language is more convenient

@ Here we show an example by considering

EQrm = {(My, My) | My and M, are TMs and
L(My) = L(M,)}

@ Assume EQqy is decidable and has a decider R
@ We construct a decider S for Ety as follows

. s 5, 5

5/6

|
EQtn Undecidable |l

e For input (M), where M is a TM:
@ Run R on input (M, My), where My isa TM
such that
L(My) =0
Q If R accepts, accept; if R rejects, reject
e For My, we simply let it reject any input string.
Recall we learned how to design an NFA for ()

@ But Ety is undecidable by an earlier proof. Thus
EQtm i1s undecidable

. el G

