REGULAR_{TM} Undecidable I

- For a given TM, we hope to check if there exists an equivalent finite automaton
- The problem can be formulated as follows

$$\mathit{REGULAR}_{\mathsf{TM}} = \{ \langle M
angle \mid M ext{ is a TM and} \ \mathcal{L}(M) ext{ is a regular language} \}$$

- As before, assume this language is decidable and has a decider *R*
- We construct a decider S for A_{TM} as follows

REGULAR_{TM} Undecidable II

• Design a TM M_2 such that it recognizes

- $\begin{cases} a \text{ regular language} & \text{if } M \text{ accepts } w \\ a \text{ non-regular language} & \text{if } M \text{ rejects } w \end{cases}$
- **2** Run *R* on input $\langle M_2 \rangle$
- If R accepts, accept; if R rejects, reject
- Then we have

 $\begin{cases} S \text{ accepts } \text{ if } M \text{ accepts } w \\ S \text{ rejects } \text{ if } M \text{ rejects } w \end{cases}$

(1)

REGULAR_{TM} Undecidable III

- Thus S is a decider for A_{TM} , a contradiction
- Now we give a specific design of M_2 so that (1) holds
- We let M_2 recognize

$$\begin{cases} \Sigma^* & \text{if } M \text{ accepts } w \\ 0^n 1^n, \forall n \ge 0 & \text{if } M \text{ rejects } w \end{cases}$$

- Note that Σ^* is a regular language, but $0^n 1^n, \forall n \ge 0$ is not
- The implementation is as follows

REGULAR_{TM} Undecidable IV

On input *x*:

- If x has the form $0^n 1^n$, accept
- If x does not have the form 0ⁿ1ⁿ, run M on input w and accept if M accepts w
- We see that if M accepts w, then any $x \in \Sigma^*$ is accepted
- On the other hand, if M does not accept w, only $0^n 1^n, \forall n \ge 0$ are accepted

EQ_{TM} Undecidable I

- So far, our strategy for proving languages undecidable involves a reduction from A_{TM}
- Sometimes reducing from some other undecidable language is more convenient
- Here we show an example by considering

$$\mathit{EQ}_{\mathsf{TM}} = \{ \langle \mathit{M}_1, \mathit{M}_2
angle \mid \mathit{M}_1 ext{ and } \mathit{M}_2 ext{ are TMs and} \ \mathit{L}(\mathit{M}_1) = \mathit{L}(\mathit{M}_2) \}$$

Assume EQ_{TM} is decidable and has a decider R
We construct a decider S for E_{TM} as follows

EQ_{TM} Undecidable II

• For input $\langle M \rangle$, where M is a TM:

• Run *R* on input $\langle M, M_1 \rangle$, where M_1 is a TM such that

$$L(M_1) = \emptyset$$

If *R* accepts, *accept*; if *R* rejects, *reject*

- For M_1 , we simply let it reject any input string. Recall we learned how to design an NFA for \emptyset
- But *E*_{TM} is undecidable by an earlier proof. Thus *EQ*_{TM} is undecidable