ELBA Undecidable I

• We have seen that $A_{\rm TM}$ undecidable $A_{\rm LBA}$ decidable

However,

$$\mathcal{E}_{\mathsf{LBA}} = \{ \langle M \rangle \mid M ext{ is an LBA where } \mathcal{L}(M) = \emptyset \}$$

is undecidable

- We do the proof by the computation history method
- Idea: the question of M accepts w can be solved by checking if $L(B) = \emptyset$, where B is an LBA

ELBA Undecidable II

- Then because we assume *E*_{LBA} is decidable, we have a decider for *A*_{TM}
- The design of *B*: *B* recognizes all accepting computation histories for *M* on *w*

 $M \text{ accepts } w \Rightarrow L(B) \neq \emptyset$ $M \text{ rejects } w \Rightarrow L(B) = \emptyset$

- We see that the machine is designed according to the given *w*. This strategy has been used in earlier examples
- Details of *B*: on any input *x*, we check if *x* is an accepting computation history for *M* on *w*

ELBA Undecidable III

• Specifically, we check if x is

and C_1, \ldots, C_l satisfy that C_1 is the start configuration, C_l is an accepting configuration, and C_i follows from C_{i-1}

• The machine looks like

ELBA Undecidable IV

- To begin, we check if the input x is in the form of (1)
- Next, C₁ is q₀w, so checking the first condition is easy
- For the third condition, we scan if C_l contains q_{accept}
- Now C_i and C_{i+1} are the same except around the head position

ELBA Undecidable V

- To compare C_i and C_{i+1} , the TM zigzags between them
- The setting looks good, but remember that *B* is an LBA
- The above discussion seems to show that our operations never go beyond |x|
- On the other hand, if you think extra space is needed, it is fine as long as the space needed is bounded by a constant factor of the length of #C₁#…#C_l#

ELBA Undecidable VI

- For example, if we copy C_i and C_{i+1} to the end for the comparison, the extra space needed is no more than |#C₁#···#C_l#|
- Thus for input x we can check if the first half is $\#C_1 \# \cdots \# C_l \#$
- Then the machine never goes beyond |x|. Further, if *M* accepts *w*, then at least one *x* is accepted by *B*

ALL_{CFG} Undecidable I

• Earlier we proved that

$$E_{\mathsf{CFG}} = \{ \langle G \rangle \mid G : \mathsf{CFG}, \mathsf{L}(G) = \emptyset \}$$

is decidable

• Now we show a related problem is undecidable

$$ALL_{CFG} = \{ \langle G \rangle \mid G : CFG, L(G) = \Sigma^* \}$$

- It checks if G generates all possible strings
- The proof is still by contradiction We assume *ALL*_{CFG} is decidable

ALL_{CFG} Undecidable II

• Idea: consider a CFG G such that

G generates $\Sigma^* \Leftrightarrow M$ does not accept w

• This is equivalent to

 $\begin{cases} G \text{ generates } \Sigma^* & \text{if } M \text{ does not accept } w \\ G \text{ fails on some strings } \text{if } M \text{ accepts } w \end{cases}$

- If we have a decider on G, then we have a decider on $A_{\rm TM}$
- If M accepts w, we let G fail to generate

ALL_{CFG} Undecidable III

an accepting computation history for M on w
That is, for G, the input cannot be

where C_1, \ldots, C_l satisfy that C_1 is the start configuration, C_l is an accepting configuration, and C_i follows from C_{i-1}

- Therefore, G generates all strings
 - that do not start with C_1 ,

ALL_{CFG} Undecidable IV

that do not end with an accepting configuration, or

- $C_i \text{ does not yield } C_{i+1}$
- Note that it's "or" because the opposite of

A and B and C

is

$$\neg A \text{ or } \neg B \text{ or } \neg C$$

• On the other hand, if *M* does not accept *w*, no accepting computation history exists

ALL_{CFG} Undecidable V

Then G generates all strings

- But how to construct such a CFG?
- Let's generate an equivalent PDA
- The PDA nondeterministically checks three branches for the three requirements
- For example, the first branch checks if the beginning of the input is *C*₁ and accepts if it is not
- The third branch is more complicated
- It accepts if C_i does not properly yields C_{i+1}
- We can push C_i to stack (# allows us to extract C_i)

ALL_{CFG} Undecidable VI

- We pop the stack to compare C_i and C_{i+1}
- They are the same except around the head position
- A problem is that when we pop C_i , it is in the reverse order
- To enable the comparison, we write the accepting computation history differently

• By this way, when we pop C_2^R , we get C_2 and can do the comparison

ALL_{CFG} Undecidable VII

• This means that for any input x, if it is in the form of $\#C_1\#\cdots \#C_l\#$, we "treat" the second segment as C_2^R in designing operations