
ELBA Undecidable I

We have seen that
ATM undecidable
ALBA decidable

However,

ELBA = {⟨M⟩ | M is an LBA where L(M) = ∅}

is undecidable

We do the proof by the computation history method

Idea: the question of M accepts w can be solved by
checking if L(B) = ∅, where B is an LBA

January 16, 2023 1 / 13

ELBA Undecidable II

Then because we assume ELBA is decidable, we have
a decider for ATM

The design of B : B recognizes all accepting
computation histories for M on w

M accepts w ⇒ L(B) ̸= ∅
M rejects w ⇒ L(B) = ∅

We see that the machine is designed according to
the given w . This strategy has been used in earlier
examples

Details of B : on any input x , we check if x is an
accepting computation history for M on w

January 16, 2023 2 / 13

ELBA Undecidable III

Specifically, we check if x is

︸︷︷︸
C1

︸︷︷︸
C2

· · ·# ︸︷︷︸
Cl

(1)

and C1, . . . ,Cl satisfy that

C1 is the start configuration,
Cl is an accepting configuration, and
Ci follows from Ci−1

The machine looks like

January 16, 2023 3 / 13

ELBA Undecidable IV

CPU

· · · # x q3 a b # x x q5 b # · · ·

To begin, we check if the input x is in the form of
(1)

Next, C1 is q0w , so checking the first condition is
easy

For the third condition, we scan if Cl contains qaccept
Now Ci and Ci+1 are the same except around the
head position

January 16, 2023 4 / 13

ELBA Undecidable V

To compare Ci and Ci+1, the TM zigzags between
them

The setting looks good, but remember that B is an
LBA

The above discussion seems to show that our
operations never go beyond |x |
On the other hand, if you think extra space is
needed, it is fine as long as the space needed is
bounded by a constant factor of the length of
#C1# · · ·#Cl#

January 16, 2023 5 / 13

ELBA Undecidable VI

For example, if we copy Ci and Ci+1 to the end for
the comparison, the extra space needed is no more
than |#C1# · · ·#Cl#|
Thus for input x we can check if the first half is
#C1# · · ·#Cl#

Then the machine never goes beyond |x |. Further, if
M accepts w , then at least one x is accepted by B

January 16, 2023 6 / 13

ALLCFG Undecidable I

Earlier we proved that

ECFG = {⟨G ⟩ | G : CFG , L(G) = ∅}

is decidable

Now we show a related problem is undecidable

ALLCFG = {⟨G ⟩ | G : CFG , L(G) = Σ∗}

It checks if G generates all possible strings

The proof is still by contradiction

We assume ALLCFG is decidable
January 16, 2023 7 / 13

ALLCFG Undecidable II

Idea: consider a CFG G such that

G generates Σ∗ ⇔ M does not accept w

This is equivalent to{
G generates Σ∗ if M does not accept w

G fails on some strings if M accepts w

If we have a decider on G , then we have a decider
on ATM

If M accepts w , we let G fail to generate
January 16, 2023 8 / 13

ALLCFG Undecidable III

an accepting computation history for M on w

That is, for G , the input cannot be

︸︷︷︸
C1

︸︷︷︸
C2

· · ·# ︸︷︷︸
Cl

#

where C1, . . . ,Cl satisfy that

C1 is the start configuration,
Cl is an accepting configuration, and
Ci follows from Ci−1

Therefore, G generates all strings
1 that do not start with C1,

January 16, 2023 9 / 13

ALLCFG Undecidable IV

2 that do not end with an accepting
configuration, or

3 Ci does not yield Ci+1

Note that it’s “or” because the opposite of

A and B and C

is
¬A or ¬B or ¬C

On the other hand, if M does not accept w , no
accepting computation history exists

January 16, 2023 10 / 13

ALLCFG Undecidable V

Then G generates all strings

But how to construct such a CFG?

Let’s generate an equivalent PDA

The PDA nondeterministically checks three
branches for the three requirements

For example, the first branch checks if the beginning
of the input is C1 and accepts if it is not

The third branch is more complicated

It accepts if Ci does not properly yields Ci+1

We can push Ci to stack (# allows us to extract Ci)

January 16, 2023 11 / 13

ALLCFG Undecidable VI

We pop the stack to compare Ci and Ci+1

They are the same except around the head position

A problem is that when we pop Ci , it is in the
reverse order

To enable the comparison, we write the accepting
computation history differently

→︸ ︷︷ ︸
C1

←︸ ︷︷ ︸
CR
2

→︸ ︷︷ ︸
C3

←︸ ︷︷ ︸
CR
4

· · ·# ︸︷︷︸
Cl

#

By this way, when we pop CR
2 , we get C2 and can

do the comparison
January 16, 2023 12 / 13

ALLCFG Undecidable VII

This means that for any input x , if it is in the form
of #C1# · · ·#Cl#, we “treat” the second segment
as CR

2 in designing operations

January 16, 2023 13 / 13

