We have seen that

A_{TM} undecidable
A_{LBA} decidable

However,

$$E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA where } L(M) = \emptyset \}$$

is undecidable

We do the proof by the computation history method

Idea: the question of M accepts w can be solved by checking if $L(B) = \emptyset$, where B is an LBA
Then because we assume E_{LBA} is decidable, we have a decider for A_{TM}

The design of B: B recognizes all accepting computation histories for M on w

$$M \text{ accepts } w \Rightarrow L(B) \neq \emptyset$$
$$M \text{ rejects } w \Rightarrow L(B) = \emptyset$$

We see that the machine is designed according to the given w. This strategy has been used in earlier examples.

Details of B: on any input x, we check if x is an accepting computation history for M on w
Specifically, we check if x is

\[
\# \quad \# \quad \# \cdots \# \quad \#
\]

(1)

and C_1, \ldots, C_l satisfy that

- C_1 is the start configuration,
- C_l is an accepting configuration, and
- C_i follows from C_{i-1}

The machine looks like
To begin, we check if the input x is in the form of (1).

Next, C_1 is q_0w, so checking the first condition is easy.

For the third condition, we scan if C_i contains q_{accept}.

Now C_i and C_{i+1} are the same except around the head position.
To compare C_i and C_{i+1}, the TM zigzags between them.

The setting looks good, but remember that B is an LBA.

The above discussion seems to show that our operations never go beyond $|x|$.

On the other hand, if you think extra space is needed, it is fine as long as the space needed is bounded by a constant factor of the length of $\#C_1\# \cdots \#C_i\#$.

E_{LBA} Undecidable V
For example, if we copy \(C_i \) and \(C_{i+1} \) to the end for the comparison, the extra space needed is no more than \(|\#C_1\# \cdots \#C_l\#|\)

Thus for input \(x \) we can check if the first half is \(\#C_1\# \cdots \#C_l\# \)

Then the machine never goes beyond \(|x|\). Further, if \(M \) accepts \(w \), then at least one \(x \) is accepted by \(B \)
Earlier we proved that

\[E_{CFG} = \{ \langle G \rangle \mid G : CFG, L(G) = \emptyset \} \]

is decidable.

Now we show a related problem is undecidable.

\[ALL_{CFG} = \{ \langle G \rangle \mid G : CFG, L(G) = \Sigma^* \} \]

It checks if \(G \) generates all possible strings.

The proof is still by contradiction.

We assume \(ALL_{CFG} \) is decidable.
Idea: consider a CFG G such that

$$G \text{ generates } \Sigma^* \iff M \text{ does not accept } w$$

This is equivalent to

$$\begin{cases} G \text{ generates } \Sigma^* & \text{if } M \text{ does not accept } w \\ G \text{ fails on some strings} & \text{if } M \text{ accepts } w \end{cases}$$

If we have a decider on G, then we have a decider on A_{TM}

If M accepts w, we let G fail to generate
an accepting computation history for M on w

That is, for G, the input cannot be

$$
\# \overset{C_1}{\longrightarrow} \# \overset{C_2}{\longrightarrow} \# \cdots \overset{C_l}{\longrightarrow} \#
$$

where C_1, \ldots, C_l satisfy that

- C_1 is the start configuration,
- C_l is an accepting configuration, and
- C_i follows from C_{i-1}

Therefore, G generates all strings

that do not start with C_1.
that do not end with an accepting configuration, or

C_i does not yield C_{i+1}

Note that it’s “or” because the opposite of A and B and C

is

$\neg A$ or $\neg B$ or $\neg C$

On the other hand, if M does not accept w, no accepting computation history exists
Then G generates all strings

But how to construct such a CFG?

Let’s generate an equivalent PDA

The PDA nondeterministically checks three branches for the three requirements

For example, the first branch checks if the beginning of the input is C_1 and accepts if it is not

The third branch is more complicated

It accepts if C_i does not properly yields C_{i+1}

We can push C_i to stack ($\#$ allows us to extract C_i)
We pop the stack to compare C_i and C_{i+1}

They are the same except around the head position

A problem is that when we pop C_i, it is in the reverse order

To enable the comparison, we write the accepting computation history differently

By this way, when we pop C_2^R, we get C_2 and can do the comparison
This means that for any input x, if it is in the form of $#C_1# \cdots #C_l#$, we “treat” the second segment as C_2^R in designing operations.