
Introduction to the Theory of Computation 2023 — Midterm 2

Solutions

Problem 1 (35 pts). Consider the context-free grammar (V,Σ, R, S) with

V = {S,B,D,X, Y } and Σ = {a, b, c},

where the rule set R contains the following rules:

S → XD | Y
X → aXb | ab
D → cD | ε
Y → aBc | aY c
B → bB | ε

(1)

(a) (5 pts) We would like to find the language of this grammar. To begin, please respectively give the
languages that the variables

B,D and X

can generate.

(b) (5 pts) By the results of (a), please respectively give the languages that the variables

Y and S

can generate. Note that you should write your answer in details.

(c) (5 pts) Is the string
a2b2c2

ambiguous under the context-free grammar (1)?

(d) (10 pts) Please convert the grammar (1) to CNF by the procedure in Theorem 2.9 of the textbook
(in our slides chap2 CNF2.pdf). In removing ?→ ε rules, consider the order as

D,B.

In removing rules of a single variable on the right, consider the order as

S,X, Y.

1

(e) (10 pts) Let us consider a simplified context-free grammar ({S,B, Y },Σ, R̃, S), where R̃ contains
the following rules.

S → Y

Y → aBc | aY c
B → bB | ε

(2)

Please convert the grammar (2) to PDA by the procedure in Lemma 2.21 of the textbook (in our
slides chap2 PDA3.pdf.) Hint: the converted PDA contains 9 nodes.

Solution.

(a) The variables B and D can respectively generate LB = {bj | j ≥ 0} and LD = {ck | k ≥ 0}, and X
generates LX = {aibj | i = j ≥ 1}.

(b) Since Y → aBc | aY c, we have the cases

(i) Y → aBc. This rule generates {abjc | j ≥ 0}.
(ii) Y → aY c. This rule generates {aibjck | i = k ≥ 2, j ≥ 0}.

Thus, after combining the cases (bi) and (bii), we imply that the rule Y → aBc | aY c generates

LY = {aibjck | i = k ≥ 1, j ≥ 0}. (3)

For the rule S = XD | Y , we have the cases

(1) S → XD. Since LX = {aibj | i = j ≥ 1} and LD = {ck | k ≥ 0}, the language of the
concatenation XD is {aibjck | i = j ≥ 1, k ≥ 0}.

(2) S → Y . We have done the language LY in (3).

By combining the cases (b1) and (b2), we conclude that S can generate

{aibjck | (i = j ≥ 1, k ≥ 0) or (i = k ≥ 1, j ≥ 0)}.

Common mistake: details are missing.

(c) Here is the leftmost derivation.

S ⇒ XD

⇒ aXbD

⇒ a2b2D

⇒ a2b2cD

⇒ a2b2c2D

⇒ a2b2c2

However, there exists another leftmost derivation.

S ⇒ Y

⇒ aY c

⇒ a2Bc2

⇒ a2bBc2

⇒ a2b2Bc2

⇒ a2b2c2

2

Therefore, the string
a2b2c2

is ambiguous under the context-free grammar (1).

(d) We follow the procedure: i) add a new start variable, ii) eliminate all ε-rules, iii) eliminate all unit
rules of the form A→ B, iv) convert the remaining rules into the CNF.

• Add S0 → S.

S0 → S

S → XD | Y
X → aXb | ab
D → cD | ε
Y → aBc | aY c
B → bB | ε

• Remove D → ε.

S0 → S

S → XD | X | Y
X → aXb | ab
D → cD | c
Y → aBc | aY c
B → bB | ε

• Remove B → ε.

S0 → S

S → XD | X | Y
X → aXb | ab
D → cD | c
Y → aBc | ac | aY c
B → bB | b

• Remove S0 → S.

S0 → XD | X | Y
X → aXb | ab
D → cD | c
Y → aBc | ac | aY c
B → bB | b

• Remove S0 → X.

S0 → XD | aXb | ab | Y
X → aXb | ab
D → cD | c
Y → aBc | ac | aY c
B → bB | b

3

• Remove S0 → Y .

S0 → XD | aXb | ab | aBc | ac | aY c
X → aXb | ab
D → cD | c
Y → aBc | ac | aY c
B → bB | b

• Add V1 → Xb.

S0 → XD | aV1 | ab | aBc | ac | aY c
X → aV1 | ab
D → cD | c
Y → aBc | ac | aY c
B → bB | b
V1 → Xb

• Add V2 → Bc.

S0 → XD | aV1 | ab | aV2 | ac | aY c
X → aV1 | ab
D → cD | c
Y → aV2 | ac | aY c
B → bB | b
V1 → Xb

V2 → Bc

• Add V3 → Y c.

S0 → XD | aV1 | ab | aV2 | ac | aV3
X → aV1 | ab
D → cD | c
Y → aV2 | ac | aV3
B → bB | b
V1 → Xb

V2 → Bc

V3 → Y c

4

• Replace any terminals in the preceding rules with the new variables.

S0 → XD | U1V1 | U1U2 | U1V2 | U1U3 | U1V3

X → U1V1 | U1U2

D → U3D | c
Y → U1V2 | U1U3 | U1V3

B → U2B | b
V1 → XU2

V2 → BU3

V3 → Y U3

U1 → a

U2 → b

U3 → c

Finally, we have the CNF of the grammar (1).

Common mistakes:

• Maintain epsilon rules incorrectly.

• Miss on adding a new start variable.

• Incorrectly follow the procedure of textbook when convert the remaining rules into the proper
form.

(e) Please see the following diagram.

5

q0

q1

q2q3 q4 q5

q6

q7

q8

ε, ε→ $

ε, ε→ S

ε, $→ ε ε, Y → c ε, ε→ B

ε, ε→ a

ε, B → B

ε, ε→ b

ε, Y → c

ε, ε→ Y
ε, ε→ a

ε, S → Y
ε,B → ε
a, a→ ε
b, b→ ε
c, c→ ε

Problem 2 (15 pts). Let Σ = {0, 1, 2}. Consider the language

L2 = {0a1b2c | a, b, c are positive integers and form an arithmetic sequence. }

The sequence {a, b, c} is an arithmetic sequence if b − a = c − b. For example, both “011222” and
“000112” are in L2, but “00122” is not in L2.

(a) (10 pts) Finish the following PDA to recognize L2 without adding new states. The stack alphabet
Γ is restricted to be {$,∆}.

q1 q2 q3 q4

q5 q6q7q8

ε, ε→ $

0, ε→ ∆

0, ε→ ∆

2,∆→ ε

2,∆→ ε

ε, $→ ε

6

From q1 to q3 we push a ∆ upon receiving an input character “0”. From q5 to q8 we pop a ∆ upon
receiving an input character “2” then accept the string if the stack is empty in the long run. You
must explain your idea of the added links.

Hint: because
a+ c = 2b,

try to think how we cancel a 0’s with certain 1’s. Note that if a is odd, then c must also be odd.
On the other hand, if a is even, then c must also be even.

(b) (5 pts) Following page 5 of the slide “chap2 PDA2.pdf” or just like what we did in the previous
exam, please simulate your PDA in (a) on the two strings “012” and “00112” by drawing trees.
Then determine whether the PDA accepts the two strings according to your simulation.

Solution.

(a) Let’s begin with the situation with an even a. We use a loop between q3 and q4 so that a/2 1’s are
processed and a ∆’s are popped. Now the stack is empty, so we use a loop between q5 and q6 to
process the rest of 1b, which has length c/2 and puch c ∆’s to the stack. Thus the diagram is now
as follows

q1 q2 q3 q4

q5 q6q7q8

ε, ε→ $

0, ε→ ∆

0, ε→ ∆

1,∆→ ε

ε,∆→ ε

ε, $→ $

1, ε→ ∆

ε, ε→ ∆

2,∆→ ε

2,∆→ ε

ε, $→ ε

We then must handle the situation if a is odd. We find that when all a ∆’s have been popped up,
we are at q4 and (a+ 1)/2 1’s have been processed. Then we go to q6 and the loop between q5 and
q6 processes (c− 1)/2 1’s and brings c ∆’s to stack.

q1 q2 q3 q4

q5 q6q7q8

ε, ε→ $

0, ε→ ∆

0, ε→ ∆

1,∆→ ε

ε,∆→ ε

ε, $→ $ ε, $→ $

1, ε→ ∆

ε, ε→ ∆

2,∆→ ε

2,∆→ ε

ε, $→ ε

7

(b) For input “012”:

q1∅ q2{$}

q2{∆, $}q3{∆, $}

q4{$} q6{$} q5{∆, $}

q7{$} q8∅

0

1

2

For input “00112”:

q1∅ q2{$}

q2{∆, $}

q2{∆,∆, $} q3{∆,∆, $}

q4{∆, $} q3{$} q5{$}

q6{∆, $} q5{∆,∆, $}

q7{∆, $}

q3{∆, $}
0

0

1

1

2

Problem 3 (35 pts). Consider the following PDA P with Σ = {0, 1} and Γ = {0, $}.

q1 q2 q3 q4

q5

ε, ε→ $

0, ε→ 0

1, 0→ ε
ε, 0→ ε

1, 0→ ε

ε, $→ ε ε, $→ ε
ε, $→ ε

1, ε→ ε

(a) (5 pts) What is the language recognized by P?

(b) (5 pts) Can you add a link from q5 to q4 (and may remove the link of q5 → q5) for satisfying the
following conditions?

• Single accept state

• Stack empty before accepting

8

• Each transition pushes or pops something from the stack, but not both

Note: adding a link is sufficient. You are not allowed to change neither Σ nor Γ.

(c) (10 pts) Convert your new diagram in (b) to a CFG by using the procedure in Lemma 2.27 of the
textbook. For simplicity, you only need to write each Apq → aArsb rule. The rules Apq → AprArq

and App → ε are not needed. In order to prepare for Apq → aArsb rules, please give table(s) for each
stack alphabet t pushed/popped, similar to what we had in slides.

(d) (5 pts) Explain why our given PDA P is not a DPDA. If you don’t know where to start, try to see
if you can complete the δ table in (e). Note that we consider the PDA P but not the modification
in (b).

(e) (10 pts) Now we aim to construct a DPDA for the same language. From issues you pointed out in
(d), can you make some minor adjustment of the PDA P (without changing Σ,Γ and Q) to have
a DPDA? To show that your resulting diagram is a DPDA, please complete the following formal
definition. In particular, you need to finish the δ table and the F set.

• Q = {q1, q2, q3, q4, q5, qr} is the set of states.

• Σ = {0, 1} is the input alphabet.

• Γ = {0, $} is the stack alphabet.

• δ is the transition function:

0 1 ε
0 $ ε 0 $ ε 0 $ ε

q1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (q2, $)
q2
q3
q4
q5 qr qr ∅ ∅ ∅ (q5, ε) ∅ ∅ ∅
qr ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ qr

• q1 is the start state.

• F = { } is the set of accept states.

Solution.

(a) The PDA accepts strings of the form 0m1n for certain condition of m and n. To figure out the
condition, we consider m for the following cases.

Case 1: For m = 0, the string is accepted for any n via

q1 → q2 → q5 → · · · → q5︸ ︷︷ ︸
all other input 1’s

.

Case 2: For an even m, m > 0, the string would be accepted if n ≥ m/2 via

q1 → q2 → · · · → q2︸ ︷︷ ︸
m input 0’s

→ q3 → q4 · · · → q3 → q4︸ ︷︷ ︸
(m/2) input 1’s

→ q5 → · · · → q5︸ ︷︷ ︸
all other input 1’s

.

9

Case 3: For an odd m, the string would be accepted if n ≥ (m+ 1)/2 via

q1 → q2 → · · · → q2︸ ︷︷ ︸
m input 0’s

→ q3 → q4 · · · → q3 → q4︸ ︷︷ ︸
(m− 1)/2 input 1’s

→ q3︸ ︷︷ ︸
1 input 1’s

→ q5 → · · · → q5︸ ︷︷ ︸
all other input 1’s

.

Up to this point, we know that L(P) has

0m1m/21k,∀m is even,m ≥ 0, k ≥ 0

and
0m1(m+1)/21k,∀m is odd, k ≥ 0.

This can be simplified to
0m1n,∀m is even,m ≥ 0, n ≥ m/2

and
0m1n,∀m is odd, n ≥ (m+ 1)/2.

When m is odd, the set of n satisfying n ≥ (m+ 1)/2 is{
m+ 1

2
,
m+ 1

2
+ 1,

m+ 1

2
+ 2, . . .

}
,

and the set of n satisfying n ≥ m/2 is also{
m+ 1

2
,
m+ 1

2
+ 1,

m+ 1

2
+ 2, . . .

}
.

Therefore, the representation of strings in L(P) can be simplified to

0m1n, n ≥ m/2, n ≥ 0,m ≥ 0.

(b) The diagram is like the following.

q1 q2 q3 q4

q5

ε, ε→ $

0, ε→ 0

1, 0→ ε
ε, 0→ ε

1, 0→ ε

ε, $→ ε ε, $→ ε ε, $→ ε

1, ε→ $

The original PDA has satisfied the first two conditions. Thus, we only have to handle the q5 → q5
link. This can be done by pushing and popping a “$” upon reading a “1” at q5.

(c) The corresponding CFG is the following:

10

• u = 0:

p r s q a b rules
2 2 2 3 0 1 A23 → 0A221
2 2 3 4 0 ε A24 → 0A23

2 2 4 3 0 1 A23 → 0A241

• u = $:

p r s q a b rules
1 2 2 5 ε ε A15 → A22

1 2 3 5 ε ε A15 → A23

1 2 4 5 ε ε A15 → A24

5 4 2 5 1 ε A55 → 1A42

5 4 3 5 1 ε A55 → 1A43

5 4 4 5 1 ε A55 → 1A44

Common mistake: the rules A55 → 1A42 and A55 → 1A43 are missed.

(d) At q2 we see that δ(q2, 0, ε) = {q2} and δ(q2, ε, $) = {q5}, violating the rule

only one of δ(q2, 0, $), δ(q2, 0, ε), δ(q2, ε, $) and δ(q2, ε, ε) is not ∅.

Thus, the PDA is not a DPDA.

Common mistake: some have that

δ(q4, 0, 0) = δ(q4, ε, 0) = δ(q4, 0, ε) = δ(q4, ε, ε) = ∅.

But if you check examples in our slides, we can do δ(q4, 0, 0) = qr and we didn’t say the example is
not a DPDA. Here we have a situation that if the diagram is not changed, then we do not have a
DPDA.

(e) The q2 → q5 link is used to accept strings with no 0’s. To remove this link, we need to do modification
to accept these strings. To accept the empty string, we can modify q1 to be an accept state. To
accept 1n with n > 0, we can add a link from q2 to q3 to handle cases where the stack top is $. The
following is the diagram.

q1 q2 q3 q4

q5

ε, ε→ $

0, ε→ 0

1, 0→ ε
1, $→ $

ε, 0→ ε

1, 0→ ε

ε, $→ ε
ε, $→ ε

1, ε→ ε

Thus, the transition function δ is the following:

11

0 1 ε
0 $ ε 0 $ ε 0 $ ε

q1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (q2, $)
q2 ∅ ∅ (q2, 0) (q3, ε) (q3, $) ∅ ∅ ∅ ∅
q3 ∅ ∅ ∅ ∅ ∅ ∅ (q4, ε) (q5, ε) ∅
q4 qr ∅ ∅ (q3, ε) ∅ ∅ ∅ (q5, ε) ∅
q5 qr qr ∅ ∅ ∅ (q5, ε) ∅ ∅ ∅
qr ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ qr

And the set of accept set F = {q1, q5}.

Problem 4 (15 pts). Xiao-Ming is a train conductor. After the train arrived at the terminal station
and was not in service, he needs to check whether there is any passenger in the train. Let us use the
knowledge of this course to help Xiao-Ming.

When the train is in service, there are passengers getting on and off the train. Let us consider these
types of passengers: adults and children, and further denote an adult and a child getting on(off) the
train as A+(A−) and C+(C−), respectively. While the train is not in service, we use the strings with
{A+, A−, C+, C−} to represent for the passing situations, which should satisfy the following rule.

• A+ and C+ must be happened before A− and C−, respectively.

(a) (10 pts) We would like to design a Turing machine that accepts all of the strings with the situation

“there is no person in the train.”

For example,
A+C+C−A−

is accepted, but
A+A+C+C−A− and A−A+

are rejected. We also accept t. Our idea is that

eliminating the first observed A+(C+) with the first observed A−(C−) in the tape,

and we use × to denote the eliminated A+(C+) and A−(C−).
(4)

Then, we move the head to the first location of the tape. To achieve this, we use a special symbol F
to denote the eliminated A+ or C+ in the first location of the tape. After that, recursively execute
the procedure (4) until none of alphabet in the string can be modified to ×. In the final, we judge
the string should be accepted or rejected.

Therefore, we concludes the aforementioned idea to the following steps.

Step 1: When reading A+(C+), modify it to{
F, as A+(C+) is the first string in the tape,

×, otherwise.

Step 2: Moving right, until the machine reads A−(C−).

Step 3: Modify A−(C−) to × and move left.

Step 4: Move left as reading A+, C+, A−, C−, ×, until the machine reads F then move right.

12

Step 5: Move right when reading ×. If the machine reads A+(C+), go to Step 1. If the machine
reads t, go right and accept the string.

Please follow these steps to draw a Turing machine with

Σ = {A+, A−, C+, C−} and Γ = {A+, A−, C+, C−,×, F},

which must be no more than 6 states (the reject state excluded). Note that we only consider moving
the head right or left in the Turing machine, and the links to the reject state qr is not needed.

(b) (5 pts) Please simulate your Turing machine in (a) on the string

A+A+A−A−.

Solution.

(a) Please see the following diagram.

q0

q5q1 q2

q3

qa

A+ → L
C+ → L
A− → L
C− → L
× → L

A+ → F,R
C+ → F,R

A− → ×, L C− → ×, L

F → R

× → R
A+ → R
C+ → R
C− → R

× → R
C+ → R
A+ → R
A− → R

A+ → ×, R
C+ → ×, R

× → R

t → R

t → R

Common mistakes:

• Draw a double circle state.

13

• Reject empty string.

• Accept strings such as ”A+C−”.

• The solution does not follow our precedure.

• Draw some non-deterministic links.

• Use over 6 states.

(b) For the string A+A+A−A−, the simulation of the Turing machine is on the following.

q0A+A+A−A− ⇒ Fq1A+A−A− ⇒ FA+q1A−A− ⇒ Fq5A+ × A−
⇒ q5FA+ × A− ⇒ Fq3A+ × A− ⇒ F × q1 × A− ⇒ F ××q1A−
⇒ F × q5 ×× ⇒ Fq5 ××× ⇒ q5F ××× ⇒ Fq3 ×××
⇒ F × q3 ×× ⇒ F ××q3× ⇒ F ××× q3 ⇒ F ××× tqa

14

