Introduction to the Theory of Computation 2023 — Midterm 1

Solutions

Problem 1 (15 pts). Let ¥ = {0,1}. Consider the following NFA

(a) (5 pts) Please draw the computation of this NFA on inputs “111” and “1011” and conclude whether
they are accepted or rejected. A computation figure is like the following (copied from Figure 1.29
in the textbook, as an illustration and not related to the NFA in this subproblem.)

q1
0 l

1 ql/\o
o INN

I g9 via €

Please follow the rules in the textbook. Note that you have to list all possible states that can be
reached once processing each input character.

(b) (10 pts) After Xiao-Ming finished the computation for the previous subproblem, he found that it’s
annoying to manually find which states can be reached with given a current state and an input
character. Therefore, he wrote a subroutine for it and here is the pseudocode:

1: procedure FINDREACHABLESTATE(cur_state, char)

2: next_level_state = §(cur_state,char)

3 for state € d(cur_state,char) do

4: next_level_state < next_level_state U J(state,¢)
5 return next_level_state

TA found the procedure failed in some cases. Please give a counterexample with no more than 3
states to Xiao-Ming. Note that we keep having > = {0, 1}.

To rigourously show that your NFA is a counterexample, first give a string s in the language and
then show that



e s is not accepted by Xiao-Ming’s procedure

e s is accepted by the correct procedure.

To do this you need to draw two trees like in (a).

Solution.

(a) For input “1117:

For input “10117:

Therefore, both strings are accepted.

—_

—_

q1

ds
SN
q1 q2 4a
| !
qz ds
VAN
qs q1 a2 qa
ds
SN
0 a2 da
q/ \C]
ql ql *q

/q/\ll

Ga 42 qs

(b) Consider computing the string “11” on the 3-state NFA

If we follow Xiao-Ming’s procedure, we have

s

! q/\
/N

q2

q s gs



So “117 is rejected. However if we follow the correct procedure, we have

ds
: C]/C]l\q
Lo/ N
q2 qs 4ds q1 q2 ds

Then it shows that “11” should be accepted.

Let us check the bug in the subroutine. When a new state S is added into next_level _state
in line 4, we should recursively check whether S can bring us to other unexplored states via the ¢
link. Otherwise, you may miss some reachable states. For example, given current state ¢; and the
input character “1”, the subroutine only returns {qi, ¢2}, but the complete reachable states should
be {q1, 42, s} If g5 is not in the reachable state, you will miss the chance going back to ¢s. Then,
you cannot head for the accepting state g; when the next input character is another “17.

Problem 2 (40 pts). Let ¥ ={0,1,2}. Consider the language
Li={w=wwy... w, | (wy +wy+ -+ +wy_1) mod3=uw,}
For example,
w = 01211 € L,
since (0+14+2+1) mod 3 =1.

(a) (10 pts) Design an NFA recognizing L; using < 4 states. Draw the diagram and give its formal
definition. Run the string
01211

by drawing a tree like in Problem 1.

(b) (10 pts) Apply the procedure described in Theorem 1.39 in the textbook to convert the NFA in
the previous subproblem into a DFA. For simplicity, please remove useless states and only show the
final result.

Hint: Don’t draw all states at once. Draw states of single element subsets and gradually expand the
graph.

(c¢) (10 pts) Now let ¥ = {0,1,2,3,...,9}. Here’s the formal definition of a DFA with 20 states
recognizing
Ly ={w=wwy...w, | (w +wy+ -+ +w, 1) mod 10 = w, }.
e Q={q,q,---,9,49 4,9} is the set of the states.
¥ =40,1,...,9} is the alphabet.

qo is the start state.

o FF={q,q),...,q} is the set of accept states.

The transition function ¢ is given as following. Let k = (i 4+ j) mod 10.

oifi=4
8(q;,7) = O J- for each i =0,...,9and 7 =0,...,9
qr otherwise

T
5(qg7j):{q1€ lt; J. foreachi=0,...,9and j=0,...,9
qr  otherwise



Please remove at least 5 useless states in the DFA and briefly explain your idea. You don’t need to
draw a 20-state diagram. Instead, explain why those states can be removed.

Hint: check the DFA obtained in (b) and the difference between Ly and L.
(10 pts) Let ¥ = {0, 1,2}. Consider the language
Ly={w=ab||w|>1, a € ¥, be X" and (sum(a) — sum(b)) mod 3 = 0}.

That is, each w € Lo can be split into two parts with the same summation after taking modulo of
3. For example, the string
“1122012” € Lo,

can be split into “11220” and “12”, and we have
(1+14+2+24+0)—(1+2)) mod3=0.

Note that € ¢ L, but “0” € L,. Please design an NFA recognizing Ly with no more than 6 states.
For easy grading, if possible, please name your states ¢i, ¢2, g3, ¢}, ¢4 and ¢

Hint: think from the viewpoint of (sum(a) — sum(b)) = wy + -+ + w; — Wiy — -+ — Wy.)

Solution.

(a)

Ly can be recognized by the following NFA

0

The NFA can be written as N = (Q, X, d, qo, F'), where

Q - {QO7 q1, 42, qa}

0 1 2 €
q0 {QO, Qa} {fh} {Q2} 0
0= q {Ch} {Q27Qa} {QO} 0
q2 {CI2} {CIO} {91, Qa} 0
Ga 0 0 0 0
F = {q.}

The computation of the string “01211” is like the following.

4



qo

0 / N\

qo Ga
1 !
Q1
2 !
do
1 !
q1
L/ N\
q2 qa

Common mistake: in the formal definition, the £ column is not shown.

(b) See the following diagram

(c) The states q1, ¢4, ¢5, ¢> and ¢) can be removed because no link goes to these states. This can be seen
from the given construction of the ¢ function: each ¢ is reached via some (¢;,7) or 6(q.,4), and
such £ =7+ ¢ mod 10 must be even.

(d) Ls can be recognized by the following NFA.



State qp, ¢1 and ¢o are used to add the value of the characters in the first part. Then non-
deterministically we go to ¢, ¢; and ¢} and start to subtract the value of characters in the second
part. For example, on state ¢ and input character 2, we need a link from ¢ to ¢; since 0 — 2
mod 3 = 1. Since € ¢ Ly, we cannot have g 5 q) link; instead, we need to specify where to go
upon receiving the last character in the first part. Note: Some have links like

This is also fine though an ¢ link shown above makes the figure simpler.

Problem 3 (20 pts).
LIBSVM! is a famous machine learning library. Each line of its input is a given data (y,x), where y is
the label and @ is the feature vector. The following string format represents each (y, x):

<label> <index;>:<value;> <indexs>:<valuey> --- <index,>:<value,>,

Thttps://www.csie.ntu.edu.tw/~cjlin/libsvim/



where <label>, <index> are integers, and <value> is a floating point number. For example, we
can utilize
1 4:1.3 5:2.8 (1)

to denote a data

y=1
z=[0 00 13 28 0 -]

Note that zero features are not be stored. Now, we simplify the format with the following alphabet
¥ ={1,F,:,B},

where I, F, : and B indicate an integer, a floating point number, a colon and a blank, respectively. Thus,
the example (1) becomes
IBI:FBI:F.

Therefore, the simplified regular expression of the LIBSVM format is
I(BI:F)". (2)

(a) (10 pts) Please generate the NFA that recognizes (2) by the procedure of Fig. 1.57, which is located
at

(i) pages 1-3 of the slide “chapl regexp2.pdf” and
(ii) page 68 of the textbook.

You must complete the diagram step-by-step and show the details. Your resulting diagram should
have 11 states.

(b) (10 pts) Let us expand the format to store an instance (y, ) that has multiple labels:
<labely;>, -+, <label,,> <index;>:<value;> :-- <index,>:<value,>.

For example,
1,5,7 4:1.3 5:2.8 (3)

indicates that the instance is associated with labels 1,5, 7. Thus, (y,x) are

y=[1 0001010 -
z=[0 00 1.3 28 0 --].

Similarly, we simplify the format with the alphabets
Y uAc},
where C is denoted as a comma, so that (3) becomes
ICICIBI:FBI:F.

Now, TAs have drawn a diagram to recognize this expanded format:



Please help TAs to convert this diagram to regular expression by GNFA. Note that, you need to
remove the states with the order

4o, 4q1,---,95-
Solution.

(a) Follow the procedure of Fig. 1.57, we construct an NFA with the following steps:

Step 1. T
00
Step 2. B
00
Step 3. :
Step 4. F
00
Step 5. BI
O+ O~0O-0
Step 6. BI:
-0 0-0-0-00
_/
Step 7. BI:F
O 0000000
NN _/

Step 8. (BI:F)*



Step 9. I(BI:F)*

(b) We have the following steps:

Step 1. Add new start and accept states.

Step 2. Remove qq.

Step 3. Remove g¢;.



Step 4. Remove ¢s.

Step 5. Remove g3.

Step 6. Remove qq.

Step 7. Remove gs.

Problem 4 (25 pts). Given ¥ = {0, 1}, prove that the following languages are irregular.

(a) (5 pts) The language
A={0m1"| ™ isa prime ,n € N}.
n

10



Moreover, let us give
s = 0%1P

with pumping length p, and prove by applying
v’z ¢ A
for all partitions =,y and z in s.

(b) (10 pts) In learning the pumping lemma, we know that we need to “guess” an s. Now Xiao-Ming
considers
s=0m"1P e A

with
m = Plpa (4>

where P; is any prime number. For such an s, can we show that s cannot be pumped for all
possibilities of z,y and z no matter what P; is? In other words, we now show that indeed a set of
strings cannot be pumped.

(c) (10 pts) The language
B ={0"*"1" | m,n € {ax}},

where the sequence {z}} is defined as
Ty = Oa

T = ].,
T = Tp—1 + Tk—2, vk > 2.

Note that you can directly use the fact that {z}} is unbounded and increasing, and here is the proof.
By mathematical induction, we can easily prove that

zp >0, Yk > 1.

Since
Tp = Tp—1 + Tp_2,

it implies that
T — Tp—1 = Th—9 > O, vk > 3. (5)

Thus, we have
Ty > Tp—1, Vk > 3,

so {zy} is a strictly increasing sequence, which implies the difference between ), and zj_4
Tp — Tp—1 — Tp—2

is also strictly increasing as k is growing.

Hint: try to check a few possible s. If chosen properly, the rest of the proof may be quite simple.

Solution.

11



(a)

Assume for contradiction that A is regular with pumping length p. Consider the string
s =071 € A.

Clearly |s| > p. By the pumping lemma, s can be written as s = xyz with |zy| < p, ¥y > 0 and
ry'z € A, Vi > 0. Because |zy| < p, y must be of the form

0% where 0 < a < p.
Therefore, zy°z must be of the form
0%P~17 where 0 < a < p.

2p — 2p —
P—a 2, P~ % st not be a prime and hence zy°z ¢ A for all possible x,y and z.
p

p

Since 1 <

Suppose A is regular. Given a pumping length p, we consider any prime number P; and let
m = Pip. (6)
Then, we have
s=0"1F € A.

Moreover, since the smallest prime number is 2, we can imply that

m=P;-p>2p. (7)

By the lemma, s can be split to
s =xyz
such that ‘
xy'z € A, Vi >0, |yl >0, and |zy| < p.
Because |zy| < p and (7), we only need to consider the case y = 0---0. Therefore,
r=0%y=0"2=0"""17
where
a>0m—a>b>1,a+b<p.
Let us check whether ' .
zy'z = AN i >,
is in A or not. When
t=m+1=PFPp+1
by (6), we have
m+(i—1)b  Pip+ Pipb
p p

Because b > 1, Pi(1 + b) is not a prime number. Thus, zy’z ¢ A while i = m + 1. Therefore, we
fail to find zyz with |y| > 0 and |xy| < p such that

= P (1+0).

ry'z € A, Vi >0,

so A is not regular.

12



An alternative solution

Considering the aforementioned notations, and then
zylz = 01P=b1P,

which implies that

Pp—b b
1P —p -
p p
is a prime number. If
0<l[yl=b<p
then ,
P — -
p
is not an integer. Thus,
xy’z ¢ A
If
lyl =p,
then
b

Pl——zpl—l.
p

If P, =2, then P, —1 = 1is not a prime number. If P, > 3, then P; — 1 is an even integer, which is
not a prime number. However, an issue is that when P, = 3, P, — 1 = 2 is a prime number. Thus,
the case of P, = 3 must be separately considered. A common error is that this case is not
considered. From this, let’s consider

nyZ — 013‘1p+171107

where

To have an integer, we still need |y| = b = p. For P, > 3, P; + 1 is an even integer, and is not a
prime number. Thus,

v’z ¢ A.
For the case of P; = 2, it has been handled in (a).

Clearly, we still need to have
P, =2 using 2y°z
P, > 2 using zy*z

However, for the solution of considering
1= Plp + ]_,

there is no need to have different cases.

13



(c¢) Assume for contradiction that B is regular with pumping length p. Because {x}} is unbounded and
increasing, there are elements in {x;} with larger than p. Let p’ be the smallest number in {x;}
with p’ > p. Consider the string

s=0"""1" ¢ B.

Clearly |s| > p. By the pumping lemma, s can be written as s = zyz with |zy| < p, |y| > 0 and
ry'z € A, Vi > 0. Because |zy| < p, y must be of the form

0% where 0 < a < p.
Therefore, 2y°z must be of the form
077917 where 0 < a < p.

However, because the number of 0’s must be no less than the number of 1’s for each string in B, we
have 0¥ —@1#' ¢ B for all possibilities of z,y and z.
Other Solution - I

Given a pumping length p, and let p’ be the smallest number in {z;} that is larger than p. We

consider

m >p and m € {x;}
to have

s=0""1" = zyz € B
such that

xy'z € C, Vi >0,y >0, and |zy| < p.

Because |zy| < p, we only need to consider the case y = 0---0. Therefore,

’ /
r=0%y=0°2= QP oty

where
a>0,b>1,a+b<p.
Since
ZEin _ anibom—l—p’—a—blp’ _ Om+p’+(i—1)b1p’ e B,
it implies

m+ (i —1)b € {x}, Vi > 0.

We assume these values correspond to

Lhoy Lhys ey Lhyy - -

in {zx}. We have

Ty, — g, = b <p, Vi >0. (8)

i1

Because we showed earlier that {x;} is strictly increasing, there exists an index k such that
TE > D, Vk > k.

Therefore,

Tpyo — Tpy1 = T > 15 > p,Vk > k. (9)

14



Because {k; | Vi > 0} is a strictly increasing index sequence, there exists i such that
kj >k, Vj >i.

Then, from (5) and (9)

Tk

i1 — Thy = Thyv1 — T, > D,

a contradiction to (8). Thus, there exists ¢ such that
xyiz — mtp'+(i=1)bqp §Z B.
so we fail to find zyz with |y| > 0 such that
a:yiz € B, Vi > 0.

Hence, B is not regular.
Other Solution - II
Let p’ be the smallest number in {x;} with p’ > p. We use z; to denote p’. Consider

s = 0" — gyy € B

Because
y=0"b>0

due to

lzy| < pand |y| >0,
then

nyZ = ()Ft+rtbrze e
We have

Tpp1 < Tpy1 +0 < Typ1 +D < Tyy1 + 24 = Tyyo,

Therefore,

Ty +b ¢ {xk}

and it implies
zy’z ¢ B.

15



