
Introduction to the Theory of Computation 2023 — Final

Solutions

Problem 1 (25 pts). Assume f and g are functions f, g : N → R+. Prove or disprove the following
statements by using the following definitions.

Definition 1. We say f(n) = O(g(n)) if there exists c > 0 and n0 ∈ N such that for every integer
n ≥ n0,

f(n) ≤ cg(n).

Definition 2. We say f(n) = o(g(n)) if for each c > 0, there exists n0 ∈ N such that for every integer
n ≥ n0,

f(n) ≤ cg(n).

(a) (10 pts) Let f(n) = n! and g(n) = 2n. f(n) = O(g(n))

(b) (10 pts) Let f(n) = n! and g(n) = nn. f(n) = o(g(n))

(c) (5 pts) Let f(n) = log(n!) and g(n) = n log n. f(n) = O(g(n))

For proving the statements, you need to show the existence of n0 for one c or all c’s, depending on
the definition of big-O or small-o. For disproving the statements, you must prove the opposite of the
definition by also showing details.

Solution.

(a) The opposite of Definition 1 is

for all c > 0 and n0 ∈ N, there exists an n ≥ n0 such that f(n) > cg(n). (∆)

For any 0 < c < 3 and n0 ∈ N, there exists n ≥ max{n0, 5} such that

n!

2n
=

n(n− 1) · · · (6)

2 · 2 · · · 2
· 5 · 4 · 3 · 2 · 1

2 · 2 · 2 · 2 · 2
> 1 · 3 > c.

For any c ≥ 3 and n0 ∈ N, there exists n ≥ max{d2ce, n0} such that

n!

2n
=

n

2
· (n− 1)(n− 2) · · · 1

2 · 2 · · · 2
> c · 1 = c.

Combining both cases, we prove the opposite of Definition 1. Thus, the statement is disproved.
Common mistakes:

1



• Some wrongly think that the opposite of Definition 1 is

for all c > 0, there exists n0 ∈ N such that ∀n ≥ n0, f(n) > cg(n) (*)

Interestingly, (∗) implies (∆) by the following proof:

Let us rename n0 in (∗) to n0. Then in proving (∆), we choose n = max{n0, n0}. Next we
discuss the proof of (∗). For any 0 < c < 3, choose n0 = 5 and we have

n!

2n
=

n(n− 1) · · · (6)

2 · 2 · · · 2
· 5 · 4 · 3 · 2 · 1

2 · 2 · 2 · 2 · 2
> 1 · 3 > c, for all n ≥ n0.

For c ≥ 3, choose n0 = d2ce and we have

n!

2n
=

n

2
· (n− 1)(n− 2) · · · 1

2 · 2 · · · 2
> c · 1 = c, for all n ≥ n0.

You are deducted some points if you give the wrong oppisite statement.

• Your proof must be clearly written. Steps of your proof must be logical.

(b) For any c ≥ 1, we simply choose n0 = 1 so that for n ≥ n0,

n!

nn
≤ 1.

For any 0 < c < 1, we choose n0 = d1
c
e so that for n ≥ n0,

n!

nn
=

n(n− 1) · · · 2
n · n · · ·n

· 1

n
≤ 1 · c.

Therefore, n! ≤ c · nn. Combining both cases, we have f(n) = o(g(n)).

Comments: Some try to argue that

lim
n→∞

n!

nn
= 0.

But the definition of limit is Definition 2 and we specifically ask you to discuss c, n0, n etc.

(c) Take c = 1 and n0 = 1. We have for n ≥ n0,

f(n) = log(n!) =
n∑

i=1

log i ≤ 1 · (n log n) = c · g(n),

showing that f(n) = O(g(n)).

Problem 2 (25 pts). In this problem, you have to design a two-tape TM for multiplying two non-zero
polynomials with binary coefficients. For example,

(1 + x)× (1 + x + x2) = 1 + x3, (1)

where
1 + 1 = 0

in the binary number system. The format of input strings is defined by

a0a1 · · · an#b0b1 · · · bm,

2



where
ai, bj ∈ {0, 1} ∀i, j,

and
an = bm = 1.

Your TM should locate the result in the 2nd tape. That is, if the input string is

11#111,

which is the example (1), the 2nd tape of the TM should be

1× (1 + x + x2) + x× (1 + x + x2)⇒ 111 t+0111 = 1001. (2)

Our idea is to calculate
aix

i(b0 + b1x + · · ·+ bmx
m) (3)

and add the corresponding coefficients of the result into the 2nd tape, for i = 0, . . . , n. For example, in
the example (1), after handling a0, the resulting configuration should be[

1(processed) 1 # 1 1 1
1 1 1 t t t

After writing the results of (3) to the 2nd tape, we should go to the next position for ai+1. Specifically,
in the 1st tape, we must know ai+1, while in the 2nd tape, we must know the starting position for
addition (i.e., the position of the coefficient for xi+1). For example, after processing a0, we consider a1x
and want to have the following configuration (here we use a dot to indicate the head position).[

1(processed) 1̇ # 1 1 1
1 1̇ 1 t t t

But the question is how to move the two heads to the desired positions. Eariler in finishing (3) for aix
i,

the head of the 1st tape must be at the segment of b0 . . . bm. To find ai+1, our strategy is to mark the
first position (i.e., a0) by F and all other processed a1, . . . , ai by P . Then by moving both heads to the
beginning of the tapes and then moving both heads right to pass over the first F and all P ’s in the first
tape, our two heads are at the position of ai+1 (or say position of xi+1 in the second tape). Note that
while we can rely on the last P to detect ai and ai+1 in the first tape, we have difficulties to find the
same position in the second tape. Thus we align the two heads by moving them to the beginning of the
tapes. Here we give an illustration: After processing a0 in (2), the configuration becomes[

F 1 # 1 1 1 ṫ
1 1 1 ṫ t t

Then we move both heads to the beginning (by detecting F ):[
Ḟ 1 # 1 1 1 t
1̇ 1 1 t t t

and we move right to pass the first F and all P ’s in the 1st tape (and every 0/1 in the 2nd):[
F 1̇ # 1 1 1 t
1 1̇ 1 t t t

This leads to the desired position.
Let us use the following algorithm to achieve our idea. We set

i = 0,

and execute the following steps.

3



Step 1: Read the current coefficient ai in the 1st tape. If i = 0, we modify a0 to F for marking the first
position. Else (i ≥ 1), we modify ai to P . At this moment, the head of the 2nd tape should be
at the position of xi (see Step 5; also when i = 0, the 2nd head is rightly in the beginning of
the tape.)

If ai = 1, do Step 2 and Step 3. Otherwise (ai = 0), go to Step 4.

Step 2: We move the 1st header to point at b0, and the 2nd header should stay in the corresponding
position of ai.

Step 3: Calculate
aix

i(b0 + b1x + · · ·+ bmx
m)

and add results to the corresponding positions in the 2nd tape.

Step 4: To process the next coefficient ai+1, move both headers to the first position of each tape.

Step 5: Then, both headers keep moving right if the header of the 1st tape reads

F or P.

After that, the 1st header should point at ai+1, and the 2nd header points at the position
corresponding to the coefficient of xi+1.

Step 6: If the 1st header points at #, the multiplication is done and we should go to qa. Else, update
the index

i← i + 1

and go to Step 1.

(a) (15 pts) Please design a two-tape Turing machine with

• ≤ 7 states (including qa and qr). We let Q = {q0, q1, q2, q3, q4, qa, qr} and q0 be the start state

• Σ = {1, 0,#}
• Γ = {1, 0,#, F, P}

Note that S is allowed in a multi-tape Turing machine. Links to qr do not need to be drawn.
To simplify your diagram, you can use the format such as{

{0, 1} → S

{0,#} → R

to represent the transition rules{
0→ S

0→ R
,

{
1→ S

0→ R
,

{
0→ S

#→ R
,

{
1→ S

#→ R
.

Hint: for handling aibj, where ai, bj ∈ {0, 1}, one link is enough by the binary system property. This
may help you to have the # of states within the limit.

(b) (10 pts) Please simulate the machine on a string

01#11.

4



Solution.

(a) Please see the following diagram.

q0q1

q2

q3

q4 qa

{
1→ F, S

t → 0, S

{
{0, 1, F, P} → R

{t, 0, 1} → S

{
#→ R

{t, 0, 1} → S {
0→ R

t → 0, R

{
1→ R

1→ 0, R{
0→ R

{0, 1} → R

{
1→ R

{t, 0} → 1, R{
t → L

{t, 0, 1} → L{
{0, 1,#, P} → L

{0, 1} → L

{
0→ F, S

t → 0, S

{
F → R

{0, 1} → R

{
0→ P, S

t → 0, S

{
0→ P, S

{0, 1} → S

{
1→ P, S

{t, 0, 1} → S

{
P → R

{0, 1} → R

{
P → R

t → 0, R

{
#→ S

{0, 1,t} → S

Let us check the relationship between the diagram and our steps.

• In the beginning, we modify a0 to F via the paths −−→q0q1 and −−→q0q3. This process corresponds to
Step 1. Moreover, if a0 = 0, we can pass Step 2 and Step 3.

• The paths −−→q1q1 and −−→q1q2 are for Step 2.

• In Step 3, we do the multiplication

ai(b0 + b1x + · · ·+ bmx
m)

by −−→q2q2.
– If bj = 0, then we move both heads to the right without changing the 2nd tape. However,

if the 2nd tape head points to t, we must change t to 0.

5



– If bj = 1, we need 1→ 0, R in the second tape because 1 + 1 = 0. Otherwise, the content
of the 2nd tape should become 1.

• For Step 4, we use −−→q2q3, −−→q3q3 and −−→q3q4 to go to the first position of both tapes. The loop −−→q3q3
stops if we see F in the 1st tape (−−→q3q4).

• We implement Step 5 by −−→q3q4 and a loop on −−→q4q4 passing all F and P in the first tape. Once
we see 0 or 1 in the 1st tape, we go to Step 1. In this situation, Step 6 is also done because
the index update is for the algorithm and the TM does not need it. On the other hand, if we
see # in the first tape, all the coefficients a0, . . . , an have been processed and we can go to qa.

In Step 1, we finish this step by running −−→q4q3 and −−→q4q1. Note that we use −−→q4q3 to skip Step 2
and Step 3 if ai = 0.

Common mistakes:

• In TM, we do not draw a double circle in the accepted state.

• In P169 of textbook, we know that “For the left-hand end, the configuration qibv yields qjcv if
the transition is left-moving (because we prevent the machine from going off the left-hand end
of the tape)”. Some students draw diagrams that conflict to this policy.

• Some students use their own notations without explanation.

(b) Here is the simulation.[
q0 0 1 # 1 1
q0 t t t t t ⇒

[
q3 F 1 # 1 1
q3 t t t t t ⇒

[
F q4 1 # 1 1
0 q4 t t t t

⇒
[
F q1 P # 1 1
0 q1 t t t t ⇒

[
F P q1 # 1 1
0 q1 t t t t ⇒

[
F P # q2 1 1
0 q2 t t t t

⇒
[
F P # 1 q2 1
0 1 q2 t t t ⇒

[
F P # 1 1 q2 t
0 1 1 q2 t t t ⇒

[
F P # 1 q3 1 t
0 1 q3 1 t t t

⇒
[
F P # q3 1 1 t
0 q3 1 1 t t t ⇒

[
F P q3 # 1 1 t
q3 0 1 1 t t t ⇒

[
F q3 P # 1 1 t
q3 0 1 1 t t t

⇒
[
q3 F P # 1 1 t
q3 0 1 1 t t t ⇒

[
F q4 P # 1 1 t
0 q4 1 1 t t t ⇒

[
F P q4 # 1 1 t
0 1 q4 1 t t t

⇒Terminate.

Problem 3 (20 pts). Let A = {〈M〉 |M is a DFA that accepts all strings in (01)∗}.

(a) (10 pts) Prove that for a DFA M ,

M accepts all strings in (01)∗ ⇐⇒ L(M) ∩ (01)∗ = ∅.

You must prove the two directions in a formal way.

(b) (10 pts) Construct a decider H to show that A is decidable.

(Hint: you may use the fact that the language

EDFA = {〈M〉 |M is a DFA with L(M) = ∅}

is decidable.)

6



Solution.

(a) (⇒): Assume for contradiction that L(M) ∩ (01)∗ 6= ∅. There exists x ∈ L(M) ∩ (01)∗. Then
x ∈ L(M) and x ∈ (01)∗. That is, x is a string in (01)∗ rejected by M , a contradiction.

(⇐): Assume for contradiction that M doesn’t accepts all strings in (01)∗. There exists x ∈ (01)∗

rejected by M . Then x ∈ L(M) ∩ (01)∗, a contradiction.

(b) Since regular languages are closed under complement and intersection, we can construct a DFA that
recognizes L(M) ∩ (01)∗. Also, there exists a decider H that decides EDFA. Therefore, we design
the following TM recognizing A.

On input 〈M〉 where M is a DFA:

1. Construct DFA B that recognizes L(M) ∩ (01)∗.

2. Run decider H on input 〈B〉.
3. If H accepts, accept. If H rejects, reject.

Problem 4 (30 pts). In machine learning, linear separability is a special property for a given data set,
which means we can use a hyper-plane to separate two classes of data instances. For example, suppose
we have a data set,

D = {(yi,xi) ∈ {−1, 1} × R2 | i = 1, . . . , n},
where yi = ±1 is the class label and xi ∈ R2 is a data instance, the set is linearly separable if there
exist w and b such that {

wTxi + b > 0 if yi = 1

wTxi + b < 0 if yi = −1

for all i. In the special case of x ∈ R2, if the data set contains at least two data points in each class, an
equivalent way to describe the linear separability is as follows.

xixj ∩ xhxk = ∅ if yiyj = 1, yhyk = 1 and yiyh = −1,

where xixj means the line segment between xi and xj. In other words,

for any two points xi,xj from the same class, and any two other points xh,xk from the
opposite class, the two segments xixj and xhxk do not overlap.

(4)

(a) (5 pts) Consider the data set{
(+1,

[
1
1

]
), (+1,

[
2
3

]
), (−1,

[
−2
−1

]
), (−1,

[
−1
2

]
), (−1,

[
−1
−1

]
)

}
.

Please check whether the data set is linearly separable by using the description in (4). In this
subproblem, you can draw a figure in an R2 plane and give some explaination as your answer.

(b) (5 pts) If D is not linearly separable, we can remove m data

Dm = {(yaj ,xaj) ∈ {−1, 1} × R2 | aj ∈ {1, . . . , n}, j = 1, . . . ,m}, (5)

such that the subset D \ Dm is linearly separable. By using the description in (4), please check
whether for the data set

D̂ =

{
(+1,

[
−1
0

]
), (+1,

[
1
0

]
), (+1,

[
0
−1

]
), (−1,

[
0
1

]
), (−1,

[
0
0

]
), (−1,

[
1
−1

]
), (−1,

[
2
−2

]
)

}
we can remove one data such that D̂ \D1 is linearly separable. In this subproblem, you can draw
a figure in an R2 plane and give some explaination as your answer.

7



(c) (10 pts) Now, consider

L =
{
〈D,m〉 | D \Dm contains at least two data in each class, and is linearly separable in R2

}
.

Please design a polynomial verifier V with the certificate

c = Dm, defined in (5), for some a1, . . . , am ∈ {1, . . . , n},

to show that L ∈ NP. Note that

• your verifier algorithm must include clear, step-by-step, high-level descriptions,

• we assume that for given points A,B,C,D ∈ R2, checking

AB ∩ CD = ∅,

costs a polynomial time g(n) in a TM, and

• you must analyze your algorithm in each step and further show the complexity in a TM.

(d) (10 pts) Show that L ∈ NP again by designing an NTM that uses the verifier V in (c) as a subroutine.

Solution.

(a) In the following figure,

x1

x2

+1:(2, 3)

-1:(−1, 2)

+1:(1, 1)

-1:(−1,−1)
-1:(−2,−1)

we can see that every blue line does not overlap with the red line. Thus, (4) is staisfied, and this
data set is linearly separable.

(b) The following figure shows all the line segments between points within the same class.

8



x1

x2

+1:(−1, 0) +1:(1, 0)

+1:(0,−1)

-1:(0, 1)

-1:(0, 0)

-1:(1,−1)

-1:(2,−2)

By removing the node (+1,

[
1
0

]
), we can check that the new figure

X

Y

+1:(−1, 0)

+1:(0,−1)

-1:(0, 1)

-1:(0, 0)

-1:(1,−1)

-1:(2,−2)

satisfies (4). Therefore,

D̂ \
{

(+1,

[
1
0

]
)

}
is linearly separable.

(c) Here is the algorithm:

Step-1 Remove the data from Dm, which requires O(n).

Step-2 Check whether there exists at least two data in each class, which requires O(n).

9



Step-3 Perform a 4-level nested for-loops, two for picking two data in the class “+1”, and another
two for picking two data in the class “-1”, which requires O(n4). Then, check the overlap
between two line segments. Overall, we need O(n4 × g(n)) in this step.

Therefore, this algorithm requires O(n4×g(n)) for verifying the certificate c, which implies L ∈ NP .

(d) We can non-deterministically pick the indices

a
(t)
1 , . . . , a(t)m

in the certificate for all t in different combinations

t = 1, . . . ,

(
n
m

)
.

Moreover, we have defined a polynomial time verifier V in (c). Thus, L ∈ NP .

10


