Two different concepts:

\[O: \text{ no more than something} \]
\[o: \text{ less than something} \]

Definition

\[f(n) = o(g(n)) \]

if

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \]
The definition of this limit:

\[\forall c > 0, \exists n_0, \forall n \geq n_0, \frac{f(n)}{g(n)} \leq c. \]

\(O \) versus \(o \):

\[\exists c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq cg(n) \]

\[\forall c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq cg(n) \]

The \(\forall c \) causes \(o \) to be something smaller.
Small-o III

- $\sqrt{n} = o(n)$

 $$\lim_{n \to \infty} \frac{\sqrt{n}}{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

- $f(n) \not= o(f(n))$

 $$\lim_{n \to \infty} \frac{f(n)}{f(n)} = 1 \not= 0$$
Example: \(A = \{0^k1^k \mid k \geq 0\} \)

- Let’s count the number of steps in the algorithm discussed before
- Check if the input is

 \[
 0\ldots01\ldots1
 \]

 This takes \(O(n) \)
- Move back: \(O(n) \)
- Cross off each 0 and 1: \(O(n) \)
- How many such crosses: \(n/2 \)

 \[
 n/2 \times O(n) = O(n^2)
 \]
Example: \(A = \{0^k1^k \mid k \geq 0\} \)

- Accept or not?
 \(O(n) \) to go through from beginning to end
- Total:

\[
O(n) + O(n^2) + O(n) = O(n^2)
\]
Definition:

$$\text{TIME}(t(n)) = \{L \mid L \text{ a language decided by an } O(t(n)) \text{ TM}\}$$

We have

$$\{0^k1^k \mid k \geq 0\} \in \text{TIME}(n^2)$$

Can we make it faster?
New Algorithm for $A = \{0^k1^k \mid k \geq 0\}$

- The procedure: cross off every other 0 and 1

0000011111
0011
01
ε

key: length of the string left must be always even

- A failed algorithm

000011
001

- Algorithm
New Algorithm for $A = \{0^k1^k \mid k \geq 0\}$

1. check 0...0 1...1
2. repeat if not empty
 total # 0 & 1: odd ⇒ reject
 cross off every other 0 and 1
3. no 0 & 1 remain, accept

- If 13 “0” ⇒ 6 “0” ⇒ 3 “0” ⇒ 1 “0”
 $1 + \log_2 n$ iterations

- Each iteration: $O(n)$ operations

Note that length of tape contents is still n as we only “mark” elements

- Total cost: $O(n \log n)$
New Algorithm for $A = \{0^k1^k \mid k \geq 0\}$ III

- Therefore

$$\{0^k1^k \mid k \geq 0\} \in \text{TIME}(n \log n)$$

- Can we do better? no

- Any language decided in $o(n \log n)$ on a single-tape TM \Rightarrow regular (not proved here)

- But we know that

$$\{0^k1^k \mid k \geq 0\}$$

is not regular
What if we copy the remained string to be after the current string? It seems that we then have

\[n + \frac{n}{2} + \frac{n}{4} + \cdots = O(n)?? \]

The problem is that the copy operation is expensive. Copying \(n \) elements needs \(O(n^2) \)
Using two-tape TM for \(\left\{ 0^k 1^k \mid k \geq 0 \right\} \)

- We can have an \(O(n) \) procedure
 1. check \(0 \ldots 0 1 \ldots 1 \)
 2. copy 0 to the second tape
 3. find the first 1
 4. sequentially cut 1 and 0
 - if no “0” reject
 - if “1” left, reject
 otherwise, accept

- Each step \(O(n) \)