Two different concepts:

- O: no more than something
- o: less than something

Definition

\[f(n) = o(g(n)) \]

if

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \]
The definition of this limit:

$$\forall c > 0, \exists n_0, \forall n \geq n_0, \frac{f(n)}{g(n)} \leq c.$$

Note that we may instead write

$$\frac{f(n)}{g(n)} < c$$

but these two limit definitions are equivalent.
O versus o:

\[\exists c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq cg(n) \]

\[\forall c > 0, \exists n_0, \forall n \geq n_0, f(n) \leq cg(n) \]

The \(\forall c \) causes \(o \) to be something smaller

\[\sqrt{n} = o(n) \]

\[\lim_{n \to \infty} \frac{\sqrt{n}}{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \]
Small-o IV

- $f(n) \neq o(f(n))$

$$\lim_{n \to \infty} \frac{f(n)}{f(n)} = 1 \neq 0$$
Example: $A = \{0^k1^k \mid k \geq 0\}$

- Let’s count the number of steps in the algorithm discussed before
- Check if the input is $0\ldots01\ldots1$

This takes $O(n)$

- Move back: $O(n)$
- Cross off each 0 and 1: $O(n)$
 How many such crosses: $n/2$

$$\frac{n}{2} \times O(n) = O(n^2)$$
Example: $A = \{0^k1^k \mid k \geq 0\} \uparrow$

- Accept or not?
 - $O(n)$ to go through from beginning to end
- Total:

$$O(n) + O(n^2) + O(n) = O(n^2)$$
Definition:

\[\text{TIME}(t(n)) \equiv \{ L \mid L \text{ a language decided by an } O(t(n)) \text{ TM} \} \]

We have

\[\{0^k1^k \mid k \geq 0\} \in \text{TIME}(n^2) \]

Can we make it faster?
New Algorithm for $A = \{0^k1^k \mid k \geq 0\}$

- The procedure: cross off every other 0 and 1

 0000011111
 0011
 01
 ε

 key: length of the string left must be always even

- A failed algorithm

 000011
 001

- Algorithm
New Algorithm for $A = \{0^k1^k \mid k \geq 0\}$ II

1. check 0...0 1...1
2. repeat if not empty
 total # 0 & 1: odd \Rightarrow reject
 cross off every other 0 and 1
3. no 0 & 1 remain, accept
 - If 13 “0” \Rightarrow 6 “0” \Rightarrow 3 “0” \Rightarrow 1 “0”

 $1 + \log_2 n$ iterations
 - Each iteration: $O(n)$ operations

 Note that length of tape contents is still n as we only “mark” elements
 - Total cost: $O(n \log n)$
New Algorithm for $A = \{0^k1^k \mid k \geq 0\}$

- Therefore

$$\{0^k1^k \mid k \geq 0\} \in \text{TIME}(n \log n)$$

- Can we do better? no

- Any language decided in $o(n \log n)$ on a single-tape TM \Rightarrow regular (not proved here)

- But we know that

$$\{0^k1^k \mid k \geq 0\}$$

is not regular
What if we copy the remained string to be after the current string? It seems that we then have

\[n + \frac{n}{2} + \frac{n}{4} + \cdots = O(n)?? \]

The problem is that the copy operation is expensive. Copying \(n \) elements needs \(O(n^2) \)
Using two-tape TM for \(\{0^k1^k \mid k \geq 0\} \)

- We can have an \(O(n) \) procedure
 1. check \(0...0 \ 1...1 \)
 2. copy 0 to the second tape
 find the first 1
 3. sequentially cut 1 and 0
 if no “0” reject
 4. if “1” left, reject
 otherwise, accept

- Each step \(O(n) \)