Big difference

$n^3 : n = 1000 \Rightarrow 10^9$

$2^n : n = 1000 \Rightarrow 2^{1000} = 10^{1000 \log_{10} 2} \approx 10^{300} \gg 10^9$

An algorithm with such complexity is not practical
Definition 7.2 I

- P: decidable languages in polynomial time on a deterministic (single-tape) TM

$$P = \bigcup_k \text{TIME}(n^k).$$

- How important this is?
 P: “roughly” corresponds to problems solvable on a computer
PATH problem I

\[\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph such that } \exists \text{ path from } s \text{ to } t \} \}

Example:
PATH problem II

There is a path from $s = 1$ to $t = 3$

- We will prove that $\text{PATH} \in P$
- Let’s start with a brute force way
 - m: number of nodes
 - $|\text{path}| \leq m$
 - $\#\text{paths} \leq m^m$
 - sequentially check if one has s to t

- the cost is exponential
- A polynomial algorithm
 - input $\langle G, s, t \rangle$, G includes nodes and edges
PATH problem III

1. mark s
2. repeat until no new node can be marked
 scan all edges, if for an edge $\langle a, b \rangle$:
 a is marked but b is not \Rightarrow mark b
3. t marked \Rightarrow accept
 otherwise \Rightarrow reject

- # of steps in the main loop: at most m (if no newly marked, stop)
- at each step, need to scan $\#\text{edges} \leq m^2$
- cost to mark a node: polynomial
- whole algorithm: polynomial
Relatively Prime I

- \(x, y \) are relatively prime if they have no common (> 1) factors
- Example: 10 and 21

\[
10 = 2 \times 5, \quad 21 = 3 \times 7
\]

- Example: 10 and 22

\[
10 = 2 \times 5, \quad 22 = 2 \times 11
\]

They are not relatively prime

- Problem: test if two numbers are relatively prime
Euclidean Algorithm I

- It can be used to find gcd (greatest common divisor)
- Example: gcd(18, 24) = 6
- We have
 \[\gcd(x, y) = 1 \iff x, y \text{ relatively prime} \]
- Algorithm: input \(\langle x, y \rangle \)
 1. Repeat if \(y \neq 0 \)
 \[x \leftarrow x \mod y \]
 exchange \(x \) and \(y \)
 2. Output \(x \)
Euclidean Algorithm II

- The output is the gcd
- Note that in the beginning we don’t need $x \geq y$

If $x < y$, then

$$x = x \mod y$$

and

$$(x, y) \text{ becomes } (y, x)$$
Euclidean Algorithm III

Why this works

\[18 = ab \]
\[24 = ac \]
\[24 = 18d + e \]
\[ac = abd + e \]
\[e = a(c - bd) \]
\[a \mid 24 - 18d \]

Is this algorithm polynomial?

At each iteration, \(x \) or \(y \) reduced at least by half
Euclidean Algorithm IV

- If \(x > y \)
 \[
 x \mod y \leq x/2
 \]

Proof

if \(x/2 \geq y \), \(x \mod y \leq y \leq x/2 \)

if \(x/2 < y \), \(x \mod y = x - y \leq x/2 \)

- Therefore,

\[
\text{iterations} \leq 2 \max(\log_2 x, \log_2 y) = O(n)
\]

\(n: \) length of input (\(x \) and \(y \) are stored as bit strings), \(\log_2 x + \log_2 y \)
Euclidean Algorithm V

- Each iteration
 \[x \mod y: \text{polynomial} \]
 see: 1100011 \% 101
 \#digit \leq O(n): \text{each digit} \leq O(n)
 exchange \(x \) and \(y \): polynomial
Th 7.16 I

- Context-free language $\in P$
- Proof omitted