Some languages not Turing-recognizable

- Σ^* is countable
 Simply count w with $|w| = 0, 1, 2, 3, \ldots$
 For example, if $\Sigma = \{0, 1\}$, then
 \[
 \{\epsilon, 0, 1, 00, 01, 10, 11, \ldots\}
 \]
- The set of TMs is countable
- Each machine can be represented as a finite string
 (think about the formal definition)
- Thus the set of TMs is a subset of $\{0, 1\}^*$
- Let
Some languages not Turing-recognizable II

L: all languages over Σ
B: all infinite binary sequences

For any $A \in L$

there is a corresponding element in B

Example:

$A: 0\{0, 1\}^*$
$\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$
$A = \{0, 00, 01, 000, 001, \ldots\}$
$\chi_A = 010110011\ldots$
Some languages not Turing-recognizable

- One-to-one correspondence between B and L
- B is uncountable (like real numbers)
 Therefore, L is uncountable
- Each TM \Rightarrow handles one language in L
 Set of TM is countable, but L is not
- Thus some languages cannot be handled by TM
Recall the halting problem is

\[A_{TM} = \{ \langle M, w \rangle \mid M : TM, \text{accepts } w \} \]

We prove it is undecidable by contradiction.

Assume there is an \(H \) that is a decider for \(A_{TM} \). Then \(H \) satisfies

\[H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{otherwise}
\end{cases} \]

Construct a new TM \(D \) with \(H \) as a subroutine.
Halting problem undecidable II

- For D, the input is $\langle M \rangle$, where M is a TM.
 It runs H on $\langle M, \langle M \rangle \rangle$ and outputs the opposite result of H.
- The machine D satisfies

 $$D(\langle M \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ rejects } \langle M \rangle \\
 \text{reject} & \text{if } M \text{ accepts } \langle M \rangle
 \end{cases}$$

- But we get a contradiction

 $$D(\langle D \rangle) = \begin{cases}
 \text{accept} & \text{if } D \text{ rejects } \langle D \rangle \\
 \text{reject} & \text{if } D \text{ accepts } \langle D \rangle
 \end{cases}$$
Halting problem undecidable III

- We said earlier that the diagonalization method is used for the proof. Is that the case?
- We show that indeed it is used
Diagonalization in the proof I

- Set of TMs is countable so we can have

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

blank entries: unknown if reject or loop

- But H knows the solution as it is a decider

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>A</td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>M_2</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Diagonalization in the proof II

- D outputs **opposite of diagonal entries**

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>\ldots</th>
<th>$\langle D \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>\ldots</td>
<td>?</td>
</tr>
</tbody>
</table>
Definition: a language is co-Turing-recognizable if its complement is Turing-recognizable

Theorem 4.22
Decidable ⇔ Turing-recognizable and co-Turing-recognizable

Why not
Turing-recognizable
⇒ complement Turing-recognizable

Note that “recognizable” means any
co-Turing-recognizable Language II

\(w \in \text{language} \)

is accepted by the machine in a finite number of steps

- That is, no infinite loop

- Example:
 \[A_{TM} \text{ Turing-recognizable but not decidable} \]

\[w \in \overline{A_{TM}} \]

\(\Rightarrow \) reject or loop

Thus \(\overline{A_{TM}} \) may not be Turing-recognizable
What if we swap $q_{\text{accept}}, q_{\text{reject}}$?

If

$$a \notin A \text{ and loop occurs}$$

then

$$a \in \overline{A}, \text{ but TM still loops}$$

We cannot reach the new q_{accept} state.

Proof of Theorem 4.22

“\Rightarrow”

Decidable \Rightarrow Turing-recognizable

Complement \Rightarrow decidable \Rightarrow Turing-recognizable
“⇐” Now A, \overline{A} are Turing-recognizable by two machines M_1, M_2

Construct a new machine M: for any input w

1. Run M_1, M_2 in parallel
2. M_1 accept \Rightarrow accept, M_2 accept \Rightarrow reject

Never infinity loop

M accepts all strings in A, reject all not in A

Thus A is decidable with a decider M