Part II: computability

We would like to study problems that can and cannot be solved by computers.

We need a more powerful model:
- Finite automata: small memory (states)
- PDA: unlimited memory (stack) by push/pop
- Turing machine: unlimited and unrestricted memory

This is about everything a real computer can do.

Thus problems not solved by Turing machines
⇒ beyond the limit of computation.
A TM has a tape as the memory

Differences from finite automata
- write/read tape
- head moves left/right
- infinite space in the tape
- rejecting/accepting take immediate effect
- machine goes on forever, otherwise
Example

\[B = \{ w\#w \mid w \in \{0, 1\}^* \} \]

We can prove that \(B \) is not CFL using pumping lemma for CFL (similar to example 2.38)

Running a sample input. Figure 3.2

\(|\): blank symbol

We assume infinite \(|\)'s after the input sequence

Strategy: zig-zag to the corresponding places on the two sides of the \(#\) and determine whether they match.
Algorithm:

1. scan to check \(\# \)
2. check \(w \) and \(\bar{w} \)
Formal definition of TM I

- It’s complicated and seldom used
- \(\delta: \)
 \[
 Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}
 \]
- Example:
 \[
 \delta(q, a) = (r, b, L)
 \]
 - \(q: \) current state
 - \(a: \) pointed in tape
 - \(r: \) next state
 - \(b: \) replace \(a \) with \(b \)
 - \(L: \) head then moved to the left
Formal definition of TM II

- \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \)
 - \(Q \): states
 - \(\Sigma \): input alphabet (blank: \(\sqcup \notin \Sigma \))
 - \(\Gamma \): tape alphabet, \(\sqcup \in \Gamma, \Sigma \subset \Gamma \)
 - \(\delta \):
 \[
 Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}
 \]
 - \(q_0 \in Q \), start
 - \(q_{\text{accept}} \in Q \)
 - \(q_{\text{reject}} \in Q \), \(q_{\text{reject}} \neq q_{\text{accept}} \)
 - Single \(q_{\text{accept}}, q_{\text{reject}} \)
Formal definition of TM III

- The input
 \[w_1 \cdots w_n \]
 is put in positions 1 \ldots, \ n of the tape in the beginning
 Assume \square in all the rest of the tape
- If head points to first position and
 \[\delta(q, ?) = (r, ?, L) \]
 then the head stays at the same position
Formal definition of TM IV