-
Algorithms |

@ Informally, an algorithm is a collection of
instructions

@ Formal definition was not done until 20th century

. R L A i

-
Hilbert's problems |

@ In 1900, Hilbert in an address at the International
Congress of Mathematicians identified 23
mathematical problems for the coming century.

@ The 10th asks for an algorithm to test if a
polynomial has integer root or not

6x3yz> +3xy° — x> —10=0
x=5y=3z=0

@ In Hilbert's description, the word “algorithm” was
not used

. R A A D

-
Hilbert's problems ||

Roughly he said a process of a finite # of operations

However, Hilbert explicitly asked the algorithm be
“devised”

Thus we need a definition of algorithms

In the end this problem is algorithmically unsolvable

. Remmiver A A S

-
Church-Turing thesis |

@ Proposed in 1936
@ Intuitive algorithms = TM algorithms

@ Note that this is a definition but not a theorem

. R L G (i

-
Hilbert's 10th problem |

@ Using our terms
D = {P | P: polynomial with integer roots}

D: decidable or not?
@ A simpler problem of a single variable

Dy = {P | P: polynomial of x with integer roots}

e Example:
43 —2x> +x -7

. Besmiver L G B

-
Hilbert's 10th problem Il

@ We can use a TM to evaluate x at

0,1,-1,2,-2,...
If 0, accept
@ If P has no integer root = this evaluation runs
forever

@ Thus we have a recognizer, but not a decider

. R L A G

-
Hilbert's 10th problem Il

@ |t can be proved that roots of a 1-variable
polynomial is within the range

Cmax
+k
5]

k: # terms, Cnax : max(abs(coefficients))
c1: coefficient of the highest order

. Bemmiver L G D

-
Hilbert's 10th problem IV

@ For the example
43 —2x° +x—7

we have
7

+4 x 1= +7
@ The proof is easy (an exercise in the book)
@ Unfortunately, the case of multiple variables is very
hard
@ Only until 1970: it's proved that bounds for
multi-variable polynomials are not possible

@ Thus this problem is undecidable
— December 14, 2020 8/13

-
Description of Turing Machines |

@ Three levels

@ High-level: no mention how to manage tape
and head
Like how we describe algorithms

© Implementation-level: English to describe how
head moves

. e L A O

-
Description of Turing Machines |l

For example, our description of the
{w#w | w € {0.1}*} language

Y

0

[

1000# 011000U
x11000#011000 U

x11000# x11000U

© formal-level: all detailed transitions
@ We will mainly use high-level descriptions later

. TR

-
Example 3.23 |

A ={(G) | G : a connected undirected graph}

@ A high-level TM

Q@ Mark a node in G
© Repeat until no new nodes marked

For every node G, mark it if 4 an edge to a
marked node
© If all nodes marked: accept, otherwise: reject

@ Real implementation

. PR T

Example 3.23 Il

Figure 3.24

N

(G6) =(1,2,3,4)((1,2),(2,3),(3,1),(1,4))
is the input string
@ Details

. B i D

-
Example 3.23 [l|

@ The first step is to check if the input is in the
correct format

@ In the first step we begin with seeing if the first part
of the input (G) includes distinct numbers (as node
IDs should be different)

@ This is similar to an example before

{#Xl#x2 e #X/ ‘ Xj € {07 1}*,X,' # XJ}

@ Then we can talk about how the head is moved
@ Thus we have implementation-level descriptions

. B i D G

