
Algorithms I

Informally, an algorithm is a collection of
instructions

Formal definition was not done until 20th century

December 14, 2020 1 / 13



Hilbert’s problems I

In 1900, Hilbert in an address at the International
Congress of Mathematicians identified 23
mathematical problems for the coming century.

The 10th asks for an algorithm to test if a
polynomial has integer root or not

6x3yz2 + 3xy 2 − x3 − 10 = 0

x = 5, y = 3, z = 0

In Hilbert’s description, the word “algorithm” was
not used

December 14, 2020 2 / 13



Hilbert’s problems II

Roughly he said a process of a finite # of operations

However, Hilbert explicitly asked the algorithm be
“devised”

Thus we need a definition of algorithms

In the end this problem is algorithmically unsolvable

December 14, 2020 3 / 13



Church-Turing thesis I

Proposed in 1936

Intuitive algorithms ≡ TM algorithms

Note that this is a definition but not a theorem

December 14, 2020 4 / 13



Hilbert’s 10th problem I

Using our terms

D = {P | P : polynomial with integer roots}

D: decidable or not?

A simpler problem of a single variable

D1 = {P | P : polynomial of x with integer roots}

Example:
4x3 − 2x2 + x − 7

December 14, 2020 5 / 13



Hilbert’s 10th problem II

We can use a TM to evaluate x at

0, 1,−1, 2,−2, . . .

If 0, accept

If P has no integer root ⇒ this evaluation runs
forever

Thus we have a recognizer, but not a decider

December 14, 2020 6 / 13



Hilbert’s 10th problem III

It can be proved that roots of a 1-variable
polynomial is within the range

±k cmax

c1

k : # terms, cmax : max(abs(coefficients))

c1: coefficient of the highest order

December 14, 2020 7 / 13



Hilbert’s 10th problem IV

For the example

4x3 − 2x2 + x − 7

we have

±4× 7

4
= ±7

The proof is easy (an exercise in the book)

Unfortunately, the case of multiple variables is very
hard

Only until 1970: it’s proved that bounds for
multi-variable polynomials are not possible

Thus this problem is undecidable
December 14, 2020 8 / 13



Description of Turing Machines I

Three levels
1 High-level: no mention how to manage tape

and head
Like how we describe algorithms

2 Implementation-level: English to describe how
head moves

December 14, 2020 9 / 13



Description of Turing Machines II

For example, our description of the
{w#w | w ∈ {0.1}∗} language

0 1 1 0 0 0 # 0 1 1 0 0 0 t

x 1 1 0 0 0 # 0 1 1 0 0 0 t

x 1 1 0 0 0 # x 1 1 0 0 0 t

3 formal-level: all detailed transitions

We will mainly use high-level descriptions later

December 14, 2020 10 / 13



Example 3.23 I

A = {〈G 〉 | G : a connected undirected graph}

A high-level TM
1 Mark a node in G
2 Repeat until no new nodes marked

For every node G , mark it if ∃ an edge to a
marked node

3 If all nodes marked: accept, otherwise: reject

Real implementation

December 14, 2020 11 / 13



Example 3.23 II

Figure 3.24

3 2

4

1

〈G 〉 = (1, 2, 3, 4)((1, 2), (2, 3), (3, 1), (1, 4))

is the input string

Details

December 14, 2020 12 / 13



Example 3.23 III

The first step is to check if the input is in the
correct format

In the first step we begin with seeing if the first part
of the input 〈G 〉 includes distinct numbers (as node
IDs should be different)

This is similar to an example before

{#x1#x2 · · ·#xl | xi ∈ {0, 1}∗, xi 6= xj}

Then we can talk about how the head is moved

Thus we have implementation-level descriptions

December 14, 2020 13 / 13


