
Example of DPDA I

• Example

$$\{0^n1^n \mid n \ge 0\}$$

The diagram we had earlier is

Example of DPDA II

• The δ function

	0			1			ϵ			
	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ	
q_1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	$(q_2, \$)$	
q_2	Ø	Ø	$(q_2, 0)$	(q_3,ϵ)	q_r	Ø	Ø	Ø	Ø	
q_3	q_r	Ø	Ø	(q_3,ϵ)	Ø	Ø	Ø	(q_4,ϵ)	Ø	
q_4	q _r	q _r	Ø	q _r	q _r	Ø	Ø	Ø	Ø	
q_r	q_r	q_r	Ø		q _r	Ø	Ø	Ø	Ø	
For the first your										

For the first row,

$$\delta(q_1,\epsilon,\epsilon) = (q_2,\$)$$

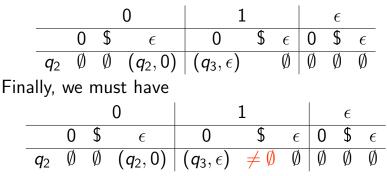
Example of DPDA III

implies that

$$\delta(\pmb{q}_1,\pmb{a},\pmb{x})=\delta(\pmb{q}_1,\pmb{a},\epsilon)=\delta(\pmb{q}_1,\epsilon,\pmb{x})=\emptyset, orall \pmb{a}\in \pmb{\Sigma},\pmb{x}\in \pmb{\mathsf{F}}$$

Thus we see everything else in the first row is \emptyset • For the second row.

$$\delta(q_2,0,\epsilon) = (q_2,0)$$


implies

Example of DPDA IV

Then

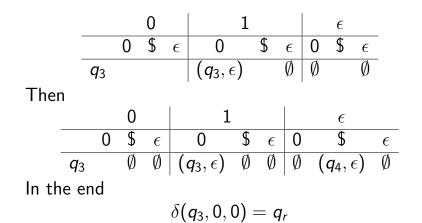
$$\delta(q_2, 1, 0) = (q_3, \epsilon)$$

further implies

Example of DPDA V

because

$$\delta(q_2, 1, \epsilon) = \delta(q_2, \epsilon, \$) = \delta(q_2, \epsilon, \epsilon) = \emptyset$$


- Thus we consider an additional state *q_r*. We need it to ensure that one of the four is not Ø
- Formally, we should have

$$\delta(q_2,1,\$)=(q_r,\epsilon)$$

though we wrote only q_r for simplicity

• For the third row, we have

Example of DPDA VI

• For the fourth row, there is no out link at q_4

Example of DPDA VII

• We let

$$\delta(q_4,a,x)=q_r$$

and

$$\delta(q_4, a, \epsilon) = \delta(q_4, \epsilon, x) = \delta(q_4, \epsilon, \epsilon) = \emptyset$$

- We can do the same for the last row
- Consider an input string 011

$$q_1 \stackrel{\epsilon}{
ightarrow} q_2, \{\$\} \stackrel{0}{
ightarrow} q_2, \{0\$\} \stackrel{1}{
ightarrow} q_3, \{\$\} \stackrel{\epsilon}{
ightarrow} q_4, \emptyset$$

Example of DPDA VIII

• From q_4 , the two possible moves are

$$\delta(q_4, 1, \epsilon)$$
 and $\delta(q_4, \epsilon, \epsilon)$

Both are \emptyset , so we don't know where to go

• Thus this input string is rejected