Example 1.73 |

• Let's apply pumping lemma to prove that

$$B=\{0^n1^n\mid n\geq 0\}$$

is not regular

Assume B is regular. From the lemma there is p such that ∀s in the language with |s| ≥ p some properties hold

Example 1.73 II

• Now consider a particular *s* in the language

$$s = 0^{p} 1^{p}$$

We see that $|s| \ge p$. By the lemma, s can be split to

$$s = xyz$$

such that

 $xy^i z \in B, \forall i \ge 0, |y| > 0,$ and $|xy| \le p$

• However, we will show that this is not possible

Example 1.73 III

1 If

$$y=0\cdots 0$$

then

$$xy = 0 \cdots 0$$
 and $z = 0 \cdots 01 \cdots 1$

Thus

хууz : #0 > #1

Then $xy^2z \notin B$, a contradiction

Example 1.73 IV

If $y = 1 \cdots 1$, similarly $xy^2z \notin B$ as #0 < #1If

 $y = 0 \cdots 01 \cdots 1$

then

xyyz \notin *B* as it is not in the form of $0^{?}1^{?}$

Example 1.73 V

• Therefore, we fail to find xyz with |y| > 0 such that

$$xy^i z \in B, \forall i \geq 0$$

Thus we get a contradiction

• We see that the condition

$$|xy| \leq p$$

is not used, but we already reach the contradiction

• For subsequent examples we will see that this condition is used

Example 1.39 l

•
$$C = \{w \mid \#0 = \#1\}$$

• We follow the previous example to have

$$s = 0^{p}1^{p} = xyz$$

 However, we cannot get the needed contradiction for the case of

$$y=0\cdots 01\cdots 1$$

Example 1.39 II

• Earlier we said

xyyz not in the form of $0^{?}1^{?}$

but now we only require

$$\#0 = \#1$$

• It is possible that

$$x = \epsilon, z = \epsilon, y = 0^{p} 1^{p}$$

and then

$$|y| > 0$$
 and $xy^i z \in C, \forall i$

Example 1.39 III

• The 3rd condition should be applied

$$|xy| \le p \Rightarrow y = 0 \cdots 0$$
 in $s = 0^p 1^p$

Then

xyyz
$$\notin C$$

• Question: the pumping lemma says

$$\forall s \in A, \cdots$$

but why in the examples we analyzed a particular s?

Example 1.39 IV

- And it seems that the selection of *s* is important. Why?
- We will explain our use of the lemma in more detail