Recall we defined three operations: \(\cup, \circ, \ast \)

For \(A_1 \cup A_2 \), we proved that it’s regular by constructing a new DFA.
But we had difficulties to prove that $A_1 \circ A_2$ is regular

We will see that by using NFA, the proof is easier
Given two regular languages A_1, A_2 under the same Σ
Is $A_1 \cup A_2$ regular?
To prove that a language is regular, by definition, it should be accepted by one DFA (or an NFA)
We will construct an NFA for $A_1 \cup A_2$
Assume A_1 and A_2 are recognized by two NFAs N_1 and N_2, respectively
We construct the following machine

Formal definition
Two NFAs:

\[N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \]
\[N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \]

Note for NFA, \(\epsilon \notin \Sigma \)
New NFA

\[Q = Q_1 \cup Q_2 \cup \{ q_0 \} \]
\[q = q_0 \]
\[F = F_1 \cup F_2 \]

\[\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{ q_1, q_2 \} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon
\end{cases} \]
The last case of δ is easily neglected
Given two NFAs

N_1 N_2

- Idea: from any accept state of N_1, add an ϵ link to q_2 (start state of N_2)
- Earlier in using DFA, the difficulty was that we didn’t know where to cut the string to two parts
Now we non-deterministically switch from the first to the second machine.

The new machine:

Accept states of N_1 are no longer accept states in the new machine.
Formal definition. Given two automata

\[(Q_1, \Sigma, \delta_1, q_1, F_1)\]
\[(Q_2, \Sigma, \delta_2, q_2, F_2)\]

New machine

\[Q = Q_1 \cup Q_2\]
\[q_0 = q_1\]
\[F = F_2\]
Closed Under Concatenation IV

δ function:

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \setminus F_1 \\
\delta_2(q, a) & q \in Q_2 \\
\delta_1(q, \epsilon) \cup \{q_2\} & q \in F_1, a = \epsilon \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon
\end{cases}
\]
Given the following machine

\[\{ x_1 \cdots x_k \mid k \geq 0, x_i \in A \} \]

Recall the star operation is defined as follows

The situation is related to \(A_1 \circ A_2 \), but we now work on the same machine \(A \)

How about the following diagram
Closed under star II

- The problem is that ϵ may not be accepted
- How about making the start state an accepting one
This may make the machine to accept strings not in A.

Some strings reaching the start state in the end were rejected. But now may be accepted.

A correct setting.

Formal definition.
Given the machine

\((Q_1, \Sigma, \delta_1, q_1, F_1)\)

New machine:

\[Q = Q_1 \cup \{q_0\} \]

\[q_0 : \text{new start state} \]

\[F = F_1 \cup \{q_0\} \]
Closed under star V

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \setminus F_1 \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1, a = \epsilon \\
\delta_1(q, a) & q \in F_1, a \neq \epsilon \\
\{q_1\} & q = q_0, a = \epsilon \\
\emptyset & q = q_0, a \neq \epsilon
\end{cases}
\]